
A Robust Detection and Correction Framework
for GNN-based Vertical Federated Learning

Zhicheng Yang1,2, Xiaoliang Fan1,2(B), Zheng Wang1,2, Zihui Wang1,2,

and Cheng Wang1,2

1 Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of
Informatics, Xiamen University, 361005, P.R. China.

2 Key Laboratory of Multimedia Trusted Perception and Efficient Computing,
Ministry of Education of China, Xiamen University, 361005, P.R. China.

{zcyang, zwang, wangziwei}@stu.xmu.edu.cn
{fanxiaoliang, cwang}@xmu.edu.cn

Abstract. Graph Neural Network based Vertical Federated Learning
(GVFL) facilitates data collaboration while preserving data privacy by
learning GNN-based node representations from participants holding dif-
ferent dimensions of node features. Existing works have shown that
GVFL is vulnerable to adversarial attacks from malicious participants.
However, how to defend against various adversarial attacks has not been
investigated under the non-i.i.d. nature of graph data and privacy con-
straints. In this paper, we propose RDC-GVFL, a novel two-phase ro-
bust GVFL framework. In the detection phase, we adapt a Shapley-based
method to evaluate the contribution of all participants to identify ma-
licious ones. In the correction phase, we leverage historical embeddings
to rectify malicious embeddings, thereby obtaining accurate predictions.
We conducted extensive experiments on three well-known graph datasets
under four adversarial attack settings. Our experimental results demon-
strate that RDC-GVFL can effectively detect malicious participants and
ensure a robust GVFL model against diverse attacks. Our code and sup-
plemental material is available at https://github.com/zcyang-cs/RDC-
GVFL.

Keywords: GNN-based Vertical Federated Learning · Adversarial at-
tack · Robustness.

1 Introduction

Graph Neural Network (GNN) has gained increasing popularity for its ability to
model high-dimensional feature information and high-order adjacent information
on graphs [16]. In practice, privacy constraints prevent GNNs from learning
better node representations when node features are held by different participants
[6]. To enable collaborative improvement of node representation while protecting
data privacy, GNN-based Vertical Federated Learning (GVFL) [3,2] employs
GNNs locally for representation learning and Vertical Federated Learning (VFL)
globally for aggregated representation.

2 Z. Yang et al.

id depoist #shop

0 80K 12

1 3K 30

2 60K 2

id age income

0 30 40K

1 42 5K

2 71 20K 2

0

1

2

1

0

Lending Platform A

Lending Platform B

Bank

user

(a) malicious
relationship

embedding

(b) malicious embedding

adversary

id true
credit

predict
credit

0 high low

1 low high

2 high high

unsecured

prediction

Fig. 1. An motivating example: an adversary can conduct various adversarial attacks:
(a) manipulate the local connection relationship for fraudulent loan purposes by adding
a connection from a low-credit user (user 1) to a high-credit user (user 0); and (b) up-
load the malicious embedding to deliberately misclassify the bank. To mitigate lending
risks, the bank must implement effective defense measures.

In real-world applications, GVFL model is vulnerable to adversarial attacks [3].
For example, in Figure 1, The adversary could compromise lending platform
A and modify the uploaded embedding information to manipulate the bank’s
eventual prediction of the user’s credit. Therefore, it is crucial for the bank to
incorporate robust defensive measures, as failure to do so could result in loans
being granted to users with lower credit.

However, neither graph defenses nor federated learning defenses against adver-
sarial attacks can be directly applied in GVFL. On one hand, privacy restric-
tions prevent graph defenders from accessing training data and models in GVFL,
which are essential for effectively implementing defense mechanisms[7,8]. On the
other hand, federated learning defenses encounter challenges when dealing with
inter-dependencies among node embeddings within a graph structure. Existing
approaches, such as Copur’s robust autoencoder [11,10], assume no dependency
between embeddings of each sample, but the presence of inter-dependencies
among node embeddings poses a hurdle for defenders to accurately learn the
appropriate feature subspace.

To address the issues above, we propose a novel Robust Detection and Correction
Framework for GNN-based Vertical Federated Learning (RDC-GVFL) to en-
hance the robustness of GVFL. RDC-GVFL has a detection phase and predic-
tion phase. In the detection phase, the server first requires each participant
to generate local embeddings to upload. Then, the server computes each par-
ticipant’s contribution to the validation set based on the Shapley Value, and
identifies the participant with the lowest contribution as the malicious partici-
pant. In the correction phase, the server retrieves the relevant embeddings
from historical embedding memory to correct malicious embeddings. Extensive
experiments on three datasets against four adversarial attack settings confirm
the effectiveness of RDC-GVFL.

RDC-GVFL 3

The main contributions of our work can be summarized as follows:

– We propose RDC-GVFL, a novel robust framework for GVFL, which can
enhance the robustness of GVFL under various attack scenarios. To the
best of our knowledge, this is the first work dedicated to defending against
adversarial attacks in GVFL.

– We present a Shapley-based detection method, enabling the effective detec-
tion of malicious participants in GVFL. Additionally, we propose a correction
mechanism that utilizes historical embeddings to generate harmless embed-
dings, thereby obtaining accurate predictions.

– We conduct extensive experiments on three well-known graph datasets un-
der four types of adversarial attacks. Experimental results demonstrate the
effectiveness of the RDC-GVFL for a robust GVFL system.

2 Related Works

2.1 Attack and Defense in Graph Neural Networks

Extensive studies have demonstrated that GCNs are vulnerable to adversarial
attacks [16]. These attacks can be classified into two categories based on the
attack stage and goal. Evasion attacks (test-time) aim to deceive the GCN during
inference, and they have been studied in works such as [19]. On the other hand,
poisoning attacks (training-time) occur during the training process and aim to
manipulate the GCN’s learned representations, as explored in works like [18]. To
enhance the robustness of GCNs, many defenses are proposed and they can be
classified into three categories including improving the graph[8], improving the
training[5], and improving the architecture[4] based on their strategy. However,
all of these existing defenses require the defender to inspect either the training
data or the resulting model, which is impractical in GVFL.

2.2 Attack and Defense in Vertical Federated Learning

Existing attacks on VFL have been shown to undermine model robustness [12].
For instance, the passive participant can launch adversarial attacks with different
objectives. In targeted attacks, specific labels are assigned to triggered samples
[13]. On the other hand, in non-targeted attacks, noise is added to randomly se-
lected samples, or missing features are introduced to impair the model’s utility
[11]. For defense, RVFR [10] and Copur [11] is designed to defend against adver-
sarial attacks. These defense approaches utilize feature purification techniques.
However, they can not be directly applied to GVFL since the inter-dependencies
among node embeddings in a graph structure makes it challenging to learn an
appropriate feature subspace for defense purpose.

4 Z. Yang et al.

2.3 Attack and Defense in GNN-based Vertical Federated Learning

GVFL has been found to be vulnerable to adversarial attacks, as highlighted in
recent studies. One such attack method, called Graph-Fraudster, was proposed
to perform evasion attacks in GVFL [3]. This attack assumes that a malicious
participant can infer additional embedding information of a normal participant
from the server. By inferring a perturbed adjacency matrix from normal em-
bedding, the adversary can generate malicious embeddings. In practice, the ad-
versary can employ various attack vectors to threaten GVFL and the defense
against adversarial attacks in GVFL remains an open research issue.

3 Methodology

In this section, We first describe the GVFL system and threat models of GVFL.
Next, we provide an overview of the proposed RDC-GVFL framework. Finally,
we present the detection and correction methods of our framework. For conve-
nience, the definitions of symbols used in this paper are listed in the Section A
of Supplemental Material.

3.1 GNN-based Vertical Federated Learning

As described in [2], GVFL involves M participants and a server that collab-
oratively train a model based on a graph dataset G = {G1, ..., GM , Y }. Here,
Y = {yj}Nj=1 denotes labels of |N | nodes held by the server, and Gi = (V,Ei,Xi)

represents the subgraph held by participant i, where Xi = {xi
j}Nj=1 denotes the

features associated with nodes V and edges Ei. The training process of GVFL is
similar to VFL. Firstly, each participant i extract features and obtains the local
embedding hi

j = fi(Ai,Xi; θi) of node j using its local Graph Neural Network
fi. Then, the server aggregates the node embeddings from all participants and
generates the label prediction ŷj for node j using its global classifier f0.

3.2 Threat Model

Adversary. There are M participants which possess distinct subsets of features
from the same set of N training instances, along with one adversary attempting
to compromise the GVFL system. For simplicity, we assume the adversary is one
of the participants in GVFL, referred to as the malicious participant.
Adversary’s goal. The malicious participant aims to induce the GVFL model
to predict the wrong class. This may serve the malicious participant’s interests,
such as earning profits by offering a service that modifies loan application results
at a bank or disrupting the normal trading system.
Adversary’s capbility. We assume the training process is well-protected (attack-
free). However, during the inference phase, the malicious participant can manip-
ulate local data to send specific poisoning-embedded features to the server or
send arbitrary embedded features to the server. As described in [11,3], we char-
acterize the malicious participant’s attack vector into the following four types
and assume each malicious participant performs the same attack per round:

RDC-GVFL 5

(a) Graph-Fraudster attack[3]: The malicious participant first steals normal
embeddings from other participants. Then, the malicious participant adds
noise to the stolen embeddings and computes an adversarial adjacency ma-
trix Â by minimizing the Mean Squared Error loss between the embedded
features f(Â,x) and the noise-added embedding hm. Finally, the malicious
participant sends the poisoning embedded features based on the adversarial
adjacency matrix.

Â = argmin
Â

MSE(f(Â,x),hm) (1)

hgf = f(Â,x) (2)

(b) Gaussian feature attack: The malicious participant sends malicious fea-
ture embedding which is added by Gaussian noise.

hgauss = h+N (µ,Σ) (3)

(c) Missing feature attack[11]: The malicious participant don’t send any em-
bedded feature to the server. This can occur when the participant’s device
is damaged or disconnected.

hmiss = 0 (4)

(d) Flipping feature attack[11]: The malicious participant sends adversarial
feature embedding hflip to mislead the server, whose magnitude λ can be
arbitrarily large.

hflip = −h ∗ λ (5)

3.3 Framework Overview

As shown in 2, we propose a two-phase framework called RDC-GVFL to en-
hance the robustness of GVFL. The Detection phase takes place between the
model training and inference phases. During the Detection phase, the server col-
lects the embeddings of participants from the validation dataset. Subsequently,
the server calculates the contribution of each participant and identifies the one
with the lowest contribution as the malicious participant. The Correction phase
replaces the original model inference phase, and the server maintains an embed-
ding memory that stores the embeddings of all training nodes. In this phase, the
server utilizes normal embedding set as a query to retrieve the most similar em-
bedding from historical embedding memory to correct the malicious embedding,
thereby obtaining accurate predictions and sending them to all participants. The
pseudo-code for RDC-GVFL is given in Algorithm 1.

3.4 Malicious Participant Detection

In addition to the training and testing processes of GVFL, we introduce a De-
tection phase to detect the malicious participant. In this phase, we propose a

6 Z. Yang et al.

GNN GNN GNN

Shapley

EmbeddingC
on

tri
bu

tio
n

Participant1 Participant2 Participant3

Participant2

1. Detection Phase (Between Model Training and Testing)

Embedding Collection Contribution Evaluation

Malicious Detection

GNN

GNN

GNN

Embedding Memory

Query

Correction

Retrieve Prediction

2. Correction Phase (Model Testing)

Validation
Dataset

Upload Malicious Participant Upload Normal Embedding Malicious Embedding

Server

Download

Malicious Embedding Correction

Fig. 2. Overview of the RDC-GVFL framework including two phases: (a) detection
phase: the server using a validation dataset to evaluate contribution and identify the
malicious participant; and (b) correction phase: the server leveraging the historical
embeddings to retrieve the relevant embedding to correct the malicious embedding for
accurate predictions sent to all participants.

Shapley-based method to detect the malicious participant and it consists of three
stages: embedding collection, contribution evaluation and malicious participant
detection.

(a) Embedding collection. The server maintains a validation dataset Dval =
{Vval, Yval}, which is used to mandate each participant generates a local
embedding and sends it to the server. A normal participant i will send the
embedding hi

v of node v ∈ Vval to the server while the malicious participant
m, unaware of the server’s detection process, will upload a poisoning embed-
ding hm

v . As a result, the server collects a set of local embeddings aligned
with its validation set.

(b) Contribution evaluation. We leverage Shapley Value, a fair contribution
valuation metric derived from cooperative game theory, to evaluate contri-
bution in GVFL. Specifically, we define the value function of a set of em-
beddings Fv(S), which indicates whether the correct classification of node v
can be achieved by making prediction using only the set S. The server then
considers the total marginal value of each embedding hi

v across all possible
sets S as the contribution of participant i. This can be formalized as follows:

Fv(S) = I(f0(Agg(S), θ0) = yv) (6)

ϕi
v({hi

v}Mi=1) =
∑

S⊆(h1
v,...h

M
v)\hi

v

|S|!(M − |S| − 1)!

M !
(Fv(S ∪ hi

v)− Fv(S)) (7)

(c) Malicious participant detection. After the embedding collecting stage
and contribution computation stage, the server accumulates the contribu-
tions of each participant on the validation set and identifies the participant

RDC-GVFL 7

with the lowest total contribution as a potential malicious participant m̂.
Based on this identification, the server may impose penalties on the mali-
cious participant. This can be formalized as follows:

m̂ = argmin
i

|Dval|∑
v=1

ϕi
v({hi

v}Mi=1) (8)

3.5 Malicious Embedding Correction

In the Correction phase, we leverage historical node embedding for correcting
malicious embedding, which relies on the inter-dependency between nodes in the
inference phase and nodes in the training phase. Specifically, during this phase,
the server is already aware of the identity of the malicious participant, and it
maintains a node embedding memory M ∈ RN×M that stores the embeddings
of all training nodes from all participants. When the GVFL model performs
inference, i.e. each participant i sends its embedding hi

j of node j to the server

requesting prediction, the server will utilizes normal embedding set {hk
j } where

k ∈ [M]\m as a query to retrieve the most similar embedding hm
ℓ from the node

embedding memory M. Subsequently, the malicious embedding hm
j is corrected

or adjusted according to the hm
ℓ . This process can be formulated as follows:

ℓ = argmax
ℓ∈[N]

{
∑

k∈[M]\m

hk
j · hk

ℓ

||hk
j || · ||hk

ℓ ||
} (9)

hm
j ← hm

ℓ (10)

4 Experiment

In this section, we carefully conduct comprehensive experiments to answer the
following three research questions.
RQ1 Does the Shapley-based detection method within the RDC-GVFL frame-
work have the capability to detect malicious participants?
RQ2 How does the performance of the RDC-GVFL framework compare to that
of other defense methods?
RQ3 How does discarding the malicious embedding directly without correcting
it affect the robustness?

4.1 Experiment Settings

Datasets.We use three benchmark datasets, i.e., Cora, Cora ML[14] and Pubmed
[15]. Dataset statistics are summarized in Table 1. The details of partition and
evaluation strategies are described in the Section B of Supplemental Material.

Baseline Methods. We compare with 1) Unsecured: no defense. 2) Krum[1]:
As no prior research has focused on robust GVFL, We borrow the idea of Krum

8 Z. Yang et al.

Algorithm 1: RDC-GVFL

Input : Number of participants M , Validation Dataset Dval, input
embedding matrix Hj of node j

Output: Prediction label ŷj of node j
// Model Training

1 Train the GVFL model to obtain the server model f0 and local GNN models
fi;

2 Retrain the GVFL model to maintain the embedding memory M;
3 m = ServerDetection(Dval);

// Model Inference

4 ŷj = ServerCorrection(m, M, Hj);

5 ServerDetection(Dval):
6 Initialize contribution list C = [0] ∗M ;
7 for v = 1, ..., |Dval| do
8 Randomly Sample S ⊂ [|Dval|];
9 for each participant i in parallel do

10 if i belongs to malicious participant then

11 Malicious i computes and sends {hi
k}k∈S to server accroding to

(1)-(5);

12 else
13 participant i computes and sends {hi

k}k∈S to server;

14 Server computes contribution ci of each participant i according to (6)-(7);
15 for i = 1, ...,M do
16 C[i]← C[i] + ci;

17 m← argmin
i

C;

18 return m;

19 ServerCorrection(m, M, Hj):

20 Hj = [h1
j ...h

m
j ...hM

j];
21 Server using normal embedding looks up in the node embedding memory M

to retrieve the most relevant embedding hm
ℓ according to (9)-(10);

22 hm
j ← hm

ℓ ;

23 Server gets the prediction ŷj = f0(Agg(h1
j , ...,h

m
j , ...,hM

j));
24 return ŷj ;

which is the most well-known robust algorithm in FL to identify the participant
with the highest pair-wise distance as the malicious participant, and discard
its embedding for defense. 3) RDC w/o Cor.: We employ the RDC-GVFL
framework to detect malicious participants, and subsequently, we directly discard
the embedding associated with the identified malicious participant as a defense
measure. 4) Oracle: where there is no attack. We use GCN[9] and SGC[17] as
the local GNN model, the details of these models and parameter settings are
shown in the Section B of Supplemental Material.

RDC-GVFL 9

Table 1. The statistics of datasets.

Datasets #Nodes #Edges #Features #Classes #Average Degree

Cora 2708 5429 1433 7 2.00
Cora ML 2810 7981 2879 7 2.84
Pubmed 19717 44325 500 3 2.25

Table 2. Detection Rate(%) / Test Accuracy(%) against different attacks. ’V1/V2’
represents scenarios where detection rate achieved 100% while ′V1/V2′ represents sce-
narios where detection rate is below 100%.

Local Model
GCN SGCDataset Attack

M=2 M=3 M=4 M=2 M=3 M=4

Oracle −−/80.13 −−/79.97 −−/78.97 −−/77.90 −−/77.73 −−/77.53
GF 100/67.80 100/70.00 91.7/72.93 100/61.37 100/65.17 100/68.57

Gaussian 100/69.93 89.0/68.97 83.3/69.00 100/37.20 100/52.97 100/54.97
Missing 100/52.97 100/65.53 100/67.30 100/63.10 100/70.33 100/72.03

Cora

Flipping 100/20.50 100/33.50 100/42.80 100/21.93 100/41.17 100/50.70

Oracle −−/84.90 −−/84.93 −−/84.87 −−/83.30 −−/83.30 −−/83.27
GF 100/72.30 78.0/74.77 100/76.23 100/65.33 100/71.57 100/74.37

Gaussian 100/64.47 78.0/63.50 100/62.93 100/35.73 100/35.57 100/35.87
Missing 100/53.50 100/63.80 100/73.97 100/72.20 100/76.00 100/77.97

Cora ML

Flipping 100/24.93 100/39.33 100/46.30 100/24.03 100/42.1 100/53.53

Oracle −−/77.83 −−/78.33 −−/77.63 −−/75.80 −−/76.17 −−/75.63
GF 100/44.13 100/53.17 100/51.80 100/35.30 100/36.97 100/42.47

Gaussian 100/59.10 100/57.60 91.7/56.77 100/43.13 100/43.10 100/43.30
Missing 100/60.57 100/62.47 100/67.13 100/64.37 100/68.33 100/67.40

Pubmed

Flipping 100/35.03 100/42.63 100/51.97 100/34.77 100/51.80 100/55.67

4.2 Detection Performance(RQ1)

To answer Q1, we measured the detection rate of our detection method under
the various attack settings, where the detection rate is calculated as the ratio of
detected malicious participants to the total number of potential cases of mali-
cious participants. We summarized the results in Table 2. Based on this results,
we can draw several conclusions.

– RDC-GVFL can effectively detects malicious participants across
different attack scenarios: Our detection method exhibits a high detection
rate for identifying malicious participants in diverse scenarios. Specifically,
our method achieves a 100% recognition rate against Missing attack and
Flipping attack, while in other attack scenarios, the recognition rate remains
above 78%.

– RDC-GVFL is more effective against more significant attacks: The
effectiveness of identification increases as the attacks become more signif-
icant. For example, GF and Gaussian attacks exhibit higher effectiveness
when the local model is SGC, and RDC-GVFL is capable of identifying the
malicious participant in all these scenarios.

To better illustrate the effectiveness of the detection method, we visualize the
contribution of each participant before and after the attack. These results can
be found in Section C of Supplemental Material.

10 Z. Yang et al.

Table 3. The accuracy (%) of each defense under five adversarial attack scenarios on
multiple datasets with a varying number of participants.

Local Model Dataset M Attack
Defense

Unsecured Krum Ours w/o Cor. Ours

GCN

Cora

2

Oracle 80.10 53.79 54.10 70.93

GF 67.80 39.70 52.99 70.76

Gaussian 69.93 47.60 52.99 70.76

Missing 52.97 32.50 52.99 70.76

Flipping 20.50 28.01 52.99 70.76

3

Oracle 80.00 64.80 64.80 74.26

GF 70.00 52.97 65.54 74.23

Gaussian 68.97 65.54 64.20 72.54

Missing 65.53 49.16 65.54 74.23

Flipping 33.50 32.47 65.54 74.23

4

Oracle 79.00 62.36 68.53 73.33

GF 72.93 56.68 67.31 73.86

Gaussian 69.00 67.32 66.29 72.61

Missing 67.30 53.18 67.32 74.35

Flipping 42.80 40.63 67.32 74.35

Cora ML

2

Oracle 84.90 51.55 56.59 78.09

GF 72.30 42.75 53.46 77.63

Gaussian 64.47 44.95 53.76 71.10

Missing 53.50 32.17 53.46 77.63

Flipping 24.93 28.67 53.46 77.63

3

Oracle 84.93 54.41 71.60 82.29

GF 74.77 47.27 64.45 75.19

Gaussian 63.50 63.76 65.46 75.00

Missing 63.80 32.15 63.76 79.89

Flipping 39.33 23.64 63.76 79.89

4

Oracle 84.87 69.64 76.89 82.69

GF 76.23 60.43 74.07 82.06

Gaussian 62.93 74.07 74.07 82.06

Missing 73.97 53.56 74.07 82.06

Flipping 46.30 28.64 74.07 82.06

Pubmed

2

Oracle 77.83 61.00 64.20 71.56

GF 44.13 46.68 60.35 71.85

Gaussian 59.10 53.35 60.35 71.85

Missing 60.57 47.26 60.35 71.85

Flipping 35.03 37.18 60.35 71.85

3

Oracle 78.33 56.43 70.00 74.76

GF 53.17 54.30 62.29 72.78

Gaussian 57.60 62.29 62.29 72.78

Missing 62.47 54.70 62.29 72.78

Flipping 42.63 34.02 62.29 72.78

4

Oracle 77.63 63.76 70.70 76.16

GF 51.80 56.50 67.66 73.17

Gaussian 56.77 67.66 67.47 72.15

Missing 67.13 57.27 67.66 73.17

Flipping 51.97 41.74 67.66 73.17

4.3 Defense Performance(RQ2-RQ3)

To answer Q2-Q3, we conducted a series of experiments with different defense
methods against various attack scenarios. The results based on GCN are sum-
marized in Tabel 3 and the other results based on SGC can be found in Section
D of Supplemental Material. Observations are concluded in this experiments.

RDC-GVFL 11

– RDC-GVFL exhibits a higher level of robustness compared to
other defense methods: RDC-GVFL consistently outperforms unsecured
and Krum under various attack scenarios. For instance, on the GVFL based
on two participants with Cora dataset, when a malicious participant per-
forms Flipping attack, our RDC-GVFL framework demonstrates a remark-
able accuracy improvement from 20.50% to 70.76%, while Krum only man-
ages to enhance the accuracy to 28.01% from the same starting point of
20.50%.

– Discarding malicious embeddings harms GVFL: RDC-GVFL without
correction does not generally improve accuracy compared to unsecured. This
observation suggests that malicious embeddings contain information useful
for model prediction, emphasizing the importance of their correction.

– Negligible loss of accuracy with RDC-GVFL: In the absence of an
adversary, the use of the RDC-GVFL framework results in a maximum accu-
racy degradation of less than 10%. However, in the presence of an adversary,
the RDC-GVFL framework can significantly enhance model accuracy and
ensure the robustness of the GVFL system.

5 Conclusion

In this work, we introduced a novel robust framework of GVFL integrated with
the Shapley-based detection and the correction mechanism to effectively defend
against various attacks during inference in GVFL. In addition, the proposed de-
tection method may have much wider applications due to the post-processing
property. Through extensive experiments, we have demonstrated that our frame-
work can achieve high detection rates for malicious participants and enhance the
robustness of GVFL. For future work, we plan to extend our method to more
scenarios and explore more effective defense methods for robust GVFL.
Acknowledgement. This work was supported by Natural Science Foundation
of China (62272403, 61872306), and FuXiaQuan National Independent Innova-
tion Demonstration Zone Collaborative Innovation Platform (No.3502ZCQXT2021003).

References

1. Blanchard, P., El Mhamdi, E.M., Guerraoui, R., Stainer, J.: Machine learning with
adversaries: Byzantine tolerant gradient descent. Advances in neural information
processing systems 30 (2017)

2. Chen, C., Zhou, J., Zheng, L., Wu, H., Lyu, L., Wu, J., Wu, B., Liu, Z., Wang, L.,
Zheng, X.: Vertically federated graph neural network for privacy-preserving node
classification. arXiv preprint arXiv:2005.11903 (2020)

3. Chen, J., Huang, G., Zheng, H., Yu, S., Jiang, W., Cui, C.: Graph-fraudster: Ad-
versarial attacks on graph neural network-based vertical federated learning. IEEE
Transactions on Computational Social Systems (2022)

12 Z. Yang et al.

4. Chen, L., Li, J., Peng, Q., Liu, Y., Zheng, Z., Yang, C.: Understanding structural
vulnerability in graph convolutional networks. arXiv preprint arXiv:2108.06280
(2021)

5. Feng, W., Zhang, J., Dong, Y., Han, Y., Luan, H., Xu, Q., Yang, Q., Kharlamov, E.,
Tang, J.: Graph random neural networks for semi-supervised learning on graphs.
Advances in neural information processing systems 33, 22092–22103 (2020)

6. Fu, X., Zhang, B., Dong, Y., Chen, C., Li, J.: Federated graph machine learning:
A survey of concepts, techniques, and applications. ACM SIGKDD Explorations
Newsletter 24(2), 32–47 (2022)

7. Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., Tang, J.: Graph structure learning
for robust graph neural networks. In: Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining. pp. 66–74 (2020)

8. Jin, W., Zhao, T., Ding, J., Liu, Y., Tang, J., Shah, N.: Empowering graph
representation learning with test-time graph transformation. arXiv preprint
arXiv:2210.03561 (2022)

9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

10. Liu, J., Xie, C., Kenthapadi, K., Koyejo, S., Li, B.: Rvfr: Robust vertical feder-
ated learning via feature subspace recovery. In: NeurIPS Workshop New Frontiers
in Federated Learning: Privacy, Fairness, Robustness, Personalization and Data
Ownership (2021)

11. Liu, J., Xie, C., Koyejo, S., Li, B.: Copur: Certifiably robust collaborative inference
via feature purification. Advances in Neural Information Processing Systems 35,
26645–26657 (2022)

12. Liu, Y., Kang, Y., Zou, T., Pu, Y., He, Y., Ye, X., Ouyang, Y., Zhang, Y.Q., Yang,
Q.: Vertical federated learning (2022)

13. Liu, Y., Yi, Z., Chen, T.: Backdoor attacks and defenses in feature-partitioned
collaborative learning. arXiv preprint arXiv:2007.03608 (2020)

14. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction
of internet portals with machine learning. Information Retrieval 3, 127–163 (2000)

15. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI magazine 29(3), 93–93 (2008)

16. Wu, B., Li, J., Yu, J., Bian, Y., Zhang, H., Chen, C., Hou, C., Fu, G., Chen, L.,
Xu, T., et al.: A survey of trustworthy graph learning: Reliability, explainability,
and privacy protection. arXiv preprint arXiv:2205.10014 (2022)

17. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph
convolutional networks. In: International conference on machine learning. pp. 6861–
6871. PMLR (2019)

18. Zhang, S., Chen, H., Sun, X., Li, Y., Xu, G.: Unsupervised graph poisoning attack
via contrastive loss back-propagation. In: Proceedings of the ACM Web Conference
2022. pp. 1322–1330 (2022)

19. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural net-
works for graph data. In: Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. pp. 2847–2856 (2018)

	A Robust Detection and Correction Framework for GNN-based Vertical Federated Learning

