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Abstract
Adapting Foundation Models (FMs) for down-
stream tasks through Federated Learning (FL)
emerges a promising strategy for protecting data
privacy and valuable FMs. Existing methods fine-
tune FM by allocating sub-FM to clients in FL,
however, leading to suboptimal performance due to
insufficient tuning and inevitable error accumula-
tions of gradients. In this paper, we propose Feder-
ated Proxy Fine-Tuning (FedPFT), a novel method
enhancing FMs adaptation in downstream tasks
through FL by two key modules. First, the sub-FM
construction module employs a layer-wise com-
pression approach, facilitating comprehensive FM
fine-tuning across all layers by emphasizing those
crucial neurons. Second, the sub-FM alignment
module conducts a two-step distillations—layer-
level and neuron-level—before and during FL fine-
tuning respectively, to reduce error of gradient by
accurately aligning sub-FM with FM under theo-
retical guarantees. Experimental results on seven
commonly used datasets (i.e., four text and three
vision) demonstrate the superiority of FedPFT. Ous
code is at https://github.com/pzp-dzd/FedPFT.

1 Introduction
In recent years, various transformer-based Foundation Mod-
els (FMs) [Bommasani et al., 2021] such as BERT [Kenton
and Toutanova, 2019], GPT [Radford et al., ], LLaMA [Tou-
vron et al., 2023], and ViT [Dosovitskiy et al., 2020] have at-
tained state-of-the-art performance across a diverse range of
natural language processing (NLP) and computer vision (CV)
tasks, yet also face both data privacy and FM copyright con-
cerns. For instance, a FM trained on medical data might in-
advertently memorize sensitive patient information, and com-
panies that own closed-source FMs may choose not to share
FMs with the public. Federated Learning (FL) [McMahan et
al., 2017] offers a privacy-preserving approach for collabo-
rative fine-tuning of FMs among multiple participants. This
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approach is increasingly promising for FM fine-tuning appli-
cations, ensuring the adaptation of downstream tasks without
directly sharing client data and server FM.

Recent methods [Xiao et al., 2023; Marchisio et al., 2023]
mainly aim to fine-tune FMs without using the full model,
which leverage layer-drop techniques [Sajjad et al., 2023]
to compress a FM and derive a sub-FM, enabling approxi-
mate fine-tuning of the original FM. However, these methods
still pose two significant challenges that adversely reduce the
performance of fine-tuned FMs. On one hand, they failed to
fine-tune FMs sufficiently as a result of discarding those in-
termediate layers of FMs, consequently leading to the perfor-
mance degradation of fine-tuned FMs. As shown in Fig.1(a),
layer-drop methods fail to update intermediate layers of the
FM during fine-tuning, due to the mismatch between the FM
and the constructed sub-FM. On the other hand, there is
a potential defect for the accumulation of gradient errors of
FMs due to the lack of alignment between sub-FMs and FMs
during FL fine-tuning, subsequently leading to further perfor-
mance degradation. Fig.1(b) shows that, due to the absence
of alignment, existing methods might accumulate significant
gradients update errors between the FM and its constructed
sub-FM during the FL fine-tuning process.

To address the above two challenges, we propose a frame-
work called Federated Proxy Fine-Tuning (FedPFT) to en-
hance the adaptation of FMs for downstream tasks, while
neither server FMs nor client data are directly shared. First,
we design the sub-FM construction module, which performs
layer compression on FMs to obtain sub-FMs by measur-
ing neurons saliency of Feed-Forward Network (FFN) in
transformer, facilitating comprehensive fine-tuning of FMs
by emphasizing those crucial neurons. Second, we design
the sub-FM alignment module, which conducts a two-step
distillations—layer-level and neuron-level—before and dur-
ing FL fine-tuning respectively, ensuring the accurate align-
ment between sub-FMs and FMs with a theoretical guaran-
tee. Extensive experiments on three FMs (i.e., BERT-base,
RoBERTa-base, and ViT-base) and seven commonly used
datasets (i.e., SST-2, QNLI, MNLI, QQP, CIFAR-10, CIFAR-
100, Flowers) demonstrate that FedPFT outperforms existing
baselines that fine-tune FMs without using the full model.
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(a) Two types of proxy sub-FM construction (b) The problem of accumulating gradients errors

Figure 1: A motivating example of two challenges in FM fine-tuning using proxy sub-model. (a) Existing methods constructing sub-FMs via
layer-drop compression discard intermediate layers in FM, causing mismatched and insufficient fine-tuning, while FedPFT conducting layer-
wise compression ensures comprehensive fine-tuning of FM; and (b) as FL fine-tuning progresses, the discrepancy between the updates made
by sub-FMs and FMs grows, leading to a deviation from the ideal update direction, while FedPFT aims to mitigate this gap by accurately
aligning sub-FMs and FMs.

Our contributions can be summarized as follows:
• We introduced FedPFT, a novel federated fine-tuning of

FM method that establishes a sub-FM as a local proxy.
FedPFT effectively improves fine-tuning performance
while maintaining the critical constraint that neither the
server FM nor the client data is directly shared.

• We propose the first module for constructing sub-FMs
through layer-wise compression. This technique main-
tains layer correspondence across sub-FMs and FMs, en-
suring the comprehensive fine-tuning of FM layers while
also considering the alleviation of training overhead.

• We proposed the second module to align sub-FMs with
FMs via a two-step distillation—layer-level and neuron-
level—before and during FL fine-tuning respectively.
Additionally, we offer theoretical insights into the sig-
nificance of distillation for fine-tuning using sub-model.

• We conducted extensive experiments on three FMs and
seven commonly used datasets. Results demonstrate that
FedPFT consistently outperforms existing baselines.

2 Related Works
2.1 FM Fine-tuning through FL
Traditional centralized fine-tuning faces privacy concerns
due to data sharing. Recent works [Chen et al., 2023a;
Yu et al., 2023; Zhuang et al., 2023] introduce the concepts of
Federated Foundation Models, to alleviate privacy concerns.
[Fan et al., 2023; Kuang et al., 2023] propose various Fed-
LLM platforms to support federated training of LLMs. [Xu
et al., 2023] fine-tune FM via FL on mobile devices. [Chen et
al., 2023b] apply FM to federated multi-task learning. [Chen
et al., 2023c] save the communication cost during FL training
through block-level parameters dropout. [Wang et al., 2023a]
reduce the communication and computation cost by training
different layers of BERT in each round. [Zhang et al., 2023]

apply parameter-efficient fine-tuning (PEFT) methods to fed-
erated fine-tuning of FMs for privacy defense. However, most
of aforementioned methods rely on sharing the server FM.
This limitation may pose risks of FM copyright leakage and
impose a substantial computational burden on clients.

2.2 FM Fine-tuning without using the full model
Early PEFT methods, including Lora [Hu et al., 2021],
Adapter-Tuning [Houlsby et al., 2019], and Prefix-Tuning [Li
and Liang, 2021], focus on efficient fine-tuning of complete
FMs by reducing the number of tunable parameters. Despite
these efforts, the gradient computation for tunable parame-
ters still needs backpropagation through the entire FM [Sung
et al., 2022]. Recently, Offsite-Tuning [Xiao et al., 2023]
is proposed to achieve fine-tuning without the full model. In
this approach, the FM owner sends a light-weight adapter and
an emulator constructed through layer-drop and knowledge
distillation [Hinton et al., 2015] to clients. Clients then fine-
tune the adapter on their data with support from the emulator.
The refined adapter is subsequently returned and incorporated
into the full model for the fine-tuning process. Similarly,
mini-model adaptation [Marchisio et al., 2023] constructs a
shallow mini-model from a fraction of the FM’s parameters.
However, those methods either discard significant amount of
intermediate layers in FM or face the problem of gradient er-
ror accumulation, resulting in sub-optimal fine-tuning perfor-
mance. Different from conventional methods, we construct
sub-FMs based on layer-wise compression and mitigate gra-
dient error accumulation by a two-step distillations.

3 FedPFT
3.1 Preliminary
Federated Learning
Given N parties Pi(i = 1, ...., N), each party holds data Di.
Let L(·, ·) be the loss function. FL aims to train a machine



Figure 2: The overall framework of FedPFT that enhances FMs adaptation in downstream tasks through FL by two key modules: (1)
Sub-FM Construction Module constructs sub-FM by layer-wise compression to facilitate comprehensive FM fine-tuning; and (2) Sub-FM
Alignment Module aligns sub-FM by two-step distillation to ensure accurate alignment between sub-FM and FM with a theoretical guarantee.

learning model Θ using the dataset D = ∪Di(i = 1, ..., N)
under the coordination of a server S, while the raw data of all
parties are not directly shared, which is formally described as

Θ = argmin
Θ

N∑
i=1

|Di|
|D|

L(Θ, Di). (1)

Foundation Model Fine-tuning
Given a foundation model Θ = {W1,W2, ...,Wn} and a
downstream task dataset D, the fine-tuning aims to obtain a
new model Θ∗ = {W ∗

1 ,W
∗
2 , ...,W

∗
n}, it is

Θ∗ = Θ+∆Θ,

∆Θ = argmin
∆Θ

L(Θ +∆Θ, D). (2)

3.2 Problem Definition
For FM fine-tuning using proxy sub-model, we first con-
struct a sub-model Θ

′
= {W1,W2, ...,Wk,W

′

k+1, ...,W
′

n}
with fewer parameters for Θ to act as a proxy. Second, fine-
tune the proxy sub-model Θ

′
using the dataset D. Finally

synchronize the updated gradients on Θ
′

to Θ. Specifically,
we construct Θ

′
by compressing Θ, and retain a portion of the

parameter matrix in Θ during the compression process. This
compression process is formally described as follows:

Θ
′
= Θ1 ∪ C(Θ2), (3)

where Θ1 ∪ Θ2 = Θ, and C(·) denotes the compression
method. During the fine-tuning of Θ

′
, we update only Θ1

and synchronize the updated gradient on Θ1 into Θ after fine-
tuning to obtain Θ∗ ’s approximation of Θ∗′

, which is for-
mally described as

Θ∗′
= (Θ1 +∆Θ

′

1) ∪Θ2,

∆Θ
′

1 = argmin
∆Θ

′
1

L((Θ1 +∆Θ
′

1) ∪ C(Θ2), D). (4)

3.3 Method Overview
The overall framework of ours FedPFT is shown in Fig.2. We
first derive a proxy sub-FM for the server FM, then collab-
oratively fine-tune the sub-FM through FL, and finally syn-
chronise the updates on the sub-FM to the FM by plugging-
in. FedPFT enhances downstream tasks adaptation of FMs
through FL by two key module: (1) Sub-FM Construction
Module that constructs sub-FMs by performing layer-wise
compression on FMs based on neuron saliency; and (2) Sub-
FM Alignment Module that reduces the difference between
FMs and sub-FMs by layer-level and neuron-level knowledge
distillation before and during FL fine-tuning, respectively.
We will introduce those two modules in details as follows.

3.4 Sub-FM Construction Module based on
Layer-wise Compression

Transformer-based FM typically consist of three parts: an
embedding layer, a task head, and a sequence of transformer
layers. Since the size of FM is dominated by all transformer
layers, we perform compression for each transformer layer.

Each transformer layer contains two sub-layers: Multi-
Head Attention (MHA) and Feed-Forward Network (FFN),
each of which applies residual connection and followed by
layer normalization. The output of MHA is

MHA(x) = Concat(Attn0(x), ...,Attnh(x))W
O,

Attn(x) = softmax(
xWQ(xWK)T√

dk
)xWV ,

(5)

where WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk , WV ∈
Rdmodel×dk and WO ∈ Rdmodel×dmodel are the weight ma-
trices of query, key, value, and output in MHA, respectively.
h is the number of attention heads, dk and dmodel are the di-
mensions of key and FM, respectively, and dmodel = dk × h.
The parameters number of MHA is about 4d2model.



The output of FFN is

FFN(x) = gelu(xW1 + b1)W2 + b2, (6)

where W1 ∈ Rdmodel×dff and W2 ∈ Rdff×dmodel are the
weight matrices of two linear layers in FFN, respectively,
b1 ∈ Rdff and b2 ∈ Rdmodel are the bias, dff is the dimen-
sions of FFN and is usually set to 4×dmodel. The parameters
number of FFA is about 8d2model. Obviously, it is that most of
the parameters in transformer layer are contained in FFN.

Hence, we opt to compress the FFN rather than the MHA
of each layer for sub-FM construction. This minimizes the
parameters number of sub-FM while ensuring a consistent set
of trainable parameters (i.e. MHA) between the FM and its
sub-FM at each layer. We accomplish layer-wise compres-
sion by systematically removing neurons with low saliency
in the FFN of each layer, employing a fixed ratio.

First, by further transforming (6), we can represent the out-
put of FFN as the sum of dff neurons outputs:

FFN(x) =

dff∑
i=1

(gelu(xui + b1i)wi) + b2, (7)

where wi ∈ Rdmodel is the ith column vector in W2, ui ∈
Rdmodel is the ith row vector in W1, b1i is the ith item in b1.

Second, based on (7) and magnitude-based pruning method
[Wen et al., 2016], we use the L2-norm of all connect weights
of neuron to measure its saliency, that is:

Saliency(i) =

√√√√dmodel∑
j=1

(w2
ij + u2

ij), (8)

where i is the index of neurons in FFN.
Finally, we construct a sub-FM serving as a proxy for

the FM, accomplished by systematically eliminating neurons
with low saliency in each layer at a fixed ratio.

3.5 Sub-FM Alignment Module based on Two-step
Knowledge Distillation

In accordance with the description of FM fine-tuning using
proxy sub-model in 3.2, it is evident that the FM fine-tuning
is entirely contingent on the gradient descent of its sub-FM.
This fine-tuning methodology prompts a fundamental ques-
tion: How can we ensure the convergence of FM to the opti-
mal value with the assistance of its sub-FM?
Theorem 1. Suppose both the function f : Rn → R and its
approximation f ′ : Rn → R are convex and differentiable,
and their gradient are Lipschitz continuous with constant
L1>0 and L2>0, respectively, i.e. we have that∥▽f(x) −
▽f(y)∥2 ≤ L1∥x−y∥2 and ∥▽f ′(x)−▽f ′(y)∥2 ≤ L2∥x−
y∥2 for any x, y. Then if we run gradient descent for k itera-
tions on f ′ with a fixed step size η ≤ 1

L1
and synchronize the

gradient to f , let ▽f ′ − ▽f = δ, when satisfying

∥δ∥22<
1

2
∥▽f∥22, (9)

η

k∑
i=1

∥δ(i)∥22 ≤
k∑

i=1

⟨δ(i), x(i) − x∗⟩, (10)

it will yield a solution f (k) which satisfies

f(x(k))− f(x∗) ≤ ∥x(0) − x∗∥22
2ηk

, (11)

where f(x∗) is the optimal value.

Proof. See Appendix.A

Intuitively, Theorem.1 indicates that when (9) and (10) are
satisfied, gradient descent of FM with the help of sub-FM is
guaranteed to converge and converges with rate O( 1k ). It is
evident that both conditions (9) and (10) are constraints on
the difference between the actual and ideal update gradients
of FM, and thus how to minimize the difference of the update
gradients becomes a problem to be solved in the next step.
Theorem 2. For a transformer, let the number of atten-
tion head be 1, and ignoring its nonlinear function and
residual connection, its output can be expressed as y =
xWQ(xWK)TxWV WOW1W2, let A = WQ(WK)T , B =
WV WO, C = W1W2, then y = xAxTxBC, and the output
of its corresponding sub-layer after compressing FFN layer
is expressed as y′ = xAxTxBC ′, assuming that the gradi-
ent of loss function loss = f(y) is Lipschitz continuous with
constant L3>0 and ∥C − C ′∥22 ≤ ϵ1, ∥y − y′∥22 ≤ ϵ2, there
exists the constant K1>0 and K2>0 such that

∥∂loss
′

∂A
− ∂loss

∂A
∥22 ≤ K1ϵ1 +K2ϵ2,

∥∂loss
′

∂B
− ∂loss

∂B
∥22 ≤ K1ϵ1 +K2ϵ2,

(12)

Proof. See Appendix.B

From Theorem.2, it is evident that shrinking the error of
gradients can be achieved by narrowing the difference in out-
put and weights between the sub-FM and FM.

Based on the above analysis, we grasp the importance of
narrowing the difference between sub-FM and FM via knowl-
edge distillation to boost the performance of FM that fine-
tuned using sub-FM. Therefore, we propose a method to align
sub-FM using layer-level and neuron-level distillations in two
phases, before and during FL fine-tuning, respectively. These
two distillation methods are shown in the Fig.3.

Layer-level distillation before FL fine-tuning
Given that our sub-FMs are constructed based layer-wise
compression, where each layer retains a set of tunable pa-
rameters (i.e., MHA), we leverage the outputs from all layers
to compute the layer-level distillation loss.

Furthermore, based on Theorem.2, we enhance the afore-
mentioned distillation loss by introducing a regularization
term. The purpose of this regularization term is to quantify
the disparity between the weights of FFN and sub-FFN in
each layer, to further facilitate a thorough knowledge transfer
during fine-tuning by refining the alignment process. Thus,
the final distillation loss is denoted as:

LKD =
1

LMKD

L∑
i=1

((

MKD∑
j=1

∥O(i)
j −O

′(i)
j ∥22)

+ µ∥W (i)
1 W

(i)
2 −W

′(i)
1 W

′(i)
2 ∥22), (13)



Figure 3: An example of two distillation processes

where L is the number of layers, MKD is the size of distill
dataset, O(i)

j is the output of the jth sample in the ith layer,

W
(i)
1 and W

(i)
2 are the two weight matrices of the ith FFN, µ

is the regularization coefficient.

Neuron-level distillation during FL fine-tuning
In addition, the absence of alignment between FM and its
constructed sub-FM during FL fine-tuning may cause the ac-
tual gradient update direction of the FM to gradually deviate
from its ideal direction. This deviation can substantially re-
duce the performance of the fine-tuned FM. To mitigate the
problem, we re-align the sub-FM with the FM after FL aggre-
gation in certain rounds.

However, since the datasets for distillation and the datasets
for local fine-tuning are typically collected from different do-
mains, excessively aligning sub-FMs through distillation may
hinder the adaptation of sub-FMs to downstream tasks. In-
spired by [Mallya and Lazebnik, 2018], during the alignment
process in FL fine-tuning, we opt to update only a subset of
neurons with low saliency in local fine-tuning to prevent the
risk of sub-FM forgetting knowledge of local data.

Moreover, since all FFNs of sub-FM are not updated dur-
ing FL fine-tuning, the effectiveness of magnitude-based neu-
ron saliency measurement methods diminishes. To address
this, we opt to select neurons for updating during alignment
based on the Average Percentage of Zero activations (APoZ)
of outputs on the downstream task dataset [Hu et al., 2016].
The APoZ

(i)
k of the kth neuron in ith layer is defined as:

APoZ
(i)
k =

1

MDTS

MDT∑
j=1

S∑
l=1

I(O(i)
jkl = 0), (14)

where MDT is the size of the downstream task dataset, S is
the sequence length of the jth sample, O(i)

jkl is the output of
the lth token of the jth sample at the kth neuron in ith layer,
I(·) is the indicator function.

We calculate the APoZ for each neuron on the client using
the local dataset before each round that requires alignment,
and subsequently select the neurons that need to be updated
during alignment based on their APoZ values.

3.6 Cost Analysis
We perform a theoretical analysis of the computational and
communication cost of FedPFT based on BERT, and other
models such as RoBERTa and ViT are similar. Following the
settings in [Wang et al., 2023a], we assume that all FL clients
have the same training settings and exclude external differ-
ences such as local dataset size and hardware environment.

Computational Cost
Given a BERT model, let V be the vocabulary size, S be
the sequence length, L be the number of layers, and cf ,cb
be the number of forward propagation and backward propa-
gation respectively. Based on the analysis in 3.4, the com-
putational cost of a BERT model is O(dmodel(V + S) +
L(4Sd2model + S2dmodel) + 2LSdmodeldff + LSdmodel)
where the four terms denote the cost of embedding, MHA,
FFN and Add&Norm, respectively.

Based on the above information, the overall time com-
plexity of the full model is computed as follows. First,
the time complexity of embedding is O(dmodel(V + S)).
Second, due to dff = 4dmodel, the forward propagation
time complexity is about O(cfL(12Sd

2
model + S2dmodel)).

Identically, the backward propagation time complexity is
O(cbL(12Sd

2
model + S2dmodel)). Finally, the overall time

cost is O(dmodel(V + S) + L(cf + cb)(12Sd
2
model +

S2dmodel)) and we have dmodel(V + S) ≪ L(cf +
cb)(12Sd

2
model + S2dmodel) and S<dmodel.

In FedPFT, because d′ff = dmodel for sub-FM, the time
complexity during local training is O(L(cf+cb)(6Sd

2
model+

S2dmodel)). Thus, compared with full model, FedPFT could
reduce almost half the computational cost of all clients.

Communication Cost
Following [Vaswani et al., 2017], the space complexity of a
BERT model is O(dmodel(V +S)+12Ld2model+2Ldmodel).

In FedPFT, if PEFT methods is not used, all model param-
eters need to be transmitted in each iteration, thus the com-
munication cost will be in the complexity of O(dmodel(V +
S)+6Ld2model+2Ldmodel), again shrinking nearly half of the
cost. If PEFT method is used, take Lora as an example, let t
be the interval between two alignments during FL fine-tuning,
q be the proportion of neurons that need to be updated during
alignment, r be the rank of Lora, and Lora is only added to
MHA, then the communication cost will be in the complexity
of O(8Lrdmodel +

2
t qLd

2
model). Since 1

t qdmodel is usually
smaller than r, the complexity is about O(Lrdmodel), which
does not impose a significant computational cost.

4 Experiments
4.1 Experimental Setting
Models and Datasets
Our evaluations span a variety of FMs, including two
NLP FMs (i.e., BERT-base [Kenton and Toutanova, 2019],



Model Setting Method SST-2 QNLI MNLI-(m/mm) QQP Transformers
Params

BERT

Fine-tuning
with full model FedPETuning 91.6 88.4 80.7/81.6 87.8 81M

Fine-tuning
without full model

FedOT 90.4 83.9 74.9/74.9 81.6 47M
FedPFT 91.6 87.5 78.6/79.0 86.3 47M

RoBERTa

Fine-tuning
with full model FedPETuning 93.6 90.8 86.1/85.5 88.3 81M

Fine-tuning
without full model

FedOT 92.8 85.3 80.6/81.4 84.6 47M
FedPFT 93.1 88.7 83.4/83.2 87.1 47M

Table 1: Overall experimental results on BERT and RoBERTa. The evaluation metric is accuracy. For MNLI, ’m’ and ’mm’ denote the
matched and mismatched results, respectively. The best result for the same setting is marked in bold.

RoBERTa-base [Liu et al., 2019]) and one CV FM (i.e., ViT-
base [Dosovitskiy et al., 2020]). Three FMs share consis-
tent hyper-parameters for the number of layers L, attention
heads h, hidden dimension dmodel, and FFN dimension dff ,
all set at L = 12, h = 12, dmodel = 768, and dff = 3072.
Our NLP FM evaluations encompass four text datasets: SST-
2 [Socher et al., 2013], QNLI [Socher et al., 2013], MNLI
[Williams et al., 2017], and QQP1. The CV FM is evaluated
on three image datasets: CIFAR-10 [Krizhevsky et al., 2009],
CIFAR-100 [Krizhevsky et al., 2009] and Flowers [Nilsback
and Zisserman, 2008]. Specifically, SST-2 is the text sen-
timent analysis task, QNLI and MNLI are the natural lan-
guage inference tasks, QQP is the text matching task, while
CIFAR-10, CIFAR-100 and Flowers focus on image recogni-
tion tasks. In addition, we employ the Bookcorpus [Zhu et
al., 2015] and Wikipedia datasets for distillation of NLP sub-
FMs, and the ImageNet-1k [Russakovsky et al., 2015] for the
distillation of CV sub-FM, respectively. Detailed dataset de-
scriptions can be found in Appendix.C.

Baselines
We compare FedPFT with two methods, including: (1) Fed-
PETuning [Zhang et al., 2023] that performs parameter-
efficient fine-tuning (PEFT) with full model through FL; and
(2) FedOT that performs PEFT without full model through
FL. It is worth noting that FedOT is the FL implementation
of Offsite-Tuning [Xiao et al., 2023] with multiple clients.

Hyper-parameters and Implementation
In the FL scenario, we set up 100 clients with 500 total
communication rounds and employ the Dirichlet data parti-
tion method [Hsu et al., 2019] to construct different label-
skew data heterogeneity scenarios. In each communication
round, we randomly select 10 clients for local fine-tuning,
using a linear decay of the global learning rate over rounds
and AdamW as the local fine-tuning optimizer. We use Fe-
dAvg [McMahan et al., 2017] for global model aggregation.
For FedOT, following [Xiao et al., 2023], we use 2 layers
at the bottom and 2 layers at the top as Adapter, and com-
press the intermediate 8 layers into 3 layers as Emulator.
For FedPFT, we construct sub-FMs by performing layer-wise
compression on the intermediate 10 layers. For fair compari-
son, we keep the number of trainable parameters the same for

1https://quoradata.quora.com/First-Quora-Dataset-Release-
Question-Pairs

Model Method CIFAR-10 Transformers
Params

ViT
FedPETuning 98.2 81M

FedOT 95.5 47M
FedPFT 97.2 47M

Table 2: Experimental results on ViT. The evaluation metric is
accuracy.

all three methods. The evaluation metric is the accuracy on
the given validation set. All pre-trained models used in exper-
iments are obtained from Hugging Face2. The FL scenarios
were implemented using FLGo [Wang et al., 2023b], and all
experiments are conducted in PyTorch 2.1 and NVIDIA 3090
GPUs. Other detailed hyper-parameters can be seen in Ap-
pendix.C.

4.2 Overall Comparisons
We first evaluate all three methods in Independent Identically
Distributed (I.I.D) data distribution scenarios. Table.1 com-
pares our FedPFT with two baselines for fine-tuning BERT
and RoBERTa on four text datasets. We observe that: 1)
the performance of all FMs fine-tuned by our FedPFT sur-
passes that achieved by FedOT and closely approaches the
performance achieved by FedPETuning that fine-tuning using
full model; and 2) FedOT exhibit a substantial performance
gap compared to FedPETuning. This observed discrepancy
from FedOT might be attributed to the absence of training
the Emulator and the accumulation of gradient errors dur-
ing fine-tuning.

We further validate the effectiveness of FedPFT for fine-
tuning CV FM. Table.2 presents the comparison results on the
ViT model with CIFAR-10 dataset, and FedPFT still outper-
forms FedOT and achieves competitive performance closer to
FedPETuning. The results on other two vision datasets (i.e.,
CIFAR-100, Flowers) are shown in Appendix.D.

4.3 Impact of Data Heterogeneity
We then evaluate the performance of FMs fine-tuned by three
different methods in Non-Independent Identically Distributed
(Non-I.I.D) data distribution scenarios. For the datasets used
in the data heterogeneity experiments, we unequally partition

2https://huggingface.co/



Model Method SST-2 QNLI Transformers
ParamsDir-1.0 Dir-5.0 Dir-10.0 Dir-1.0 Dir-5.0 Dir-10.0

BERT
FedPETuning 90.6 90.9 91.1 87.3 87.9 88.1 81M

FedOT 89.1 89.9 90.1 82.4 82.9 83.1 47M
FedPFT 89.7 91.1 91.6 86.1 86.9 87.2 47M

RoBERTa
FedPETuning 93.0 93.3 93.5 90.2 90.6 90.8 81M

FedOT 91.7 92.1 92.8 84.1 84.6 85.1 47M
FedPFT 92.1 92.7 93.1 87.2 87.6 88.1 47M

Table 3: Non-IID experimental results on BERT and RoBERTa. The evaluation metric is accuracy.

Method Model
BERT RoBERTa

FedOT 83.9 85.3
FedPFT N 83.0 78.9
FedPFT B 86.9 86.7
FedPFT D 84.3 85.5

FedPFT(ours) 87.5 88.7

Table 4: Ablation study of FedPFT on QNLI

the dataset into 100 clients following the label distribution
Yi ∽ Dir(αp), where i is the client id, p is the global la-
bel distribution, α is the degree of Non-I.I.D and a smaller α
generates a high label distribution shift. We construct three
different label-skewing scenarios by adjusting the value of α:
Dir-1.0, Dir-5.0, and Dir-10.0. Table.3 shows the compar-
ison of three methods for fine-tuning BERT and RoBERTa
in different data-heterogeneous scenarios. We observe that:
1) the performance of all methods declines as the degree of
Non-I.I.D increases; 2) our FedPFT still outperforms FedOT
and achieves competitive performance closer to FedPETun-
ing. Visualisation of label distributions and results of Non-
I.I.D experiments on vision datasets are shown in the Ap-
pendix.E.

4.4 Ablation Study
To evaluate the efficacy of individual components within
FedPFT, we design the following variants for conducting ab-
lation study:

• FedPFT N which does not perform alignment by knowl-
edge distillation;

• FedPFT B which perform sub-FM alignment by knowl-
edge distillation only before FL fine-tuning;

• FedPFT D which perform sub-FM alignment by knowl-
edge distillation only during FL fine-tuning;

Moreover, to validate the effectiveness of the sub-FM con-
struction module of FedPFT, we list the experimental results
of FedOT for comparison with FedPFT B, as both perform
sub-FM alignment by knowledge distillation only before FL
fine-tuning. Results are shown in Table.4 and we observe
that: 1) both FedPFT N which does not align the sub-FMs
entirely and FedPFT D which lacks the alignment before FL
fine-tuning, exhibit notably poor performance. This is consis-
tent with our theoretical analysis (see Theorem.1), indicating
that a significant disparity between the gradients of sub-FM
and FM can impede the convergence of fine-tuning methods

Hyper-Parameter Model
BERT RoBERTa

Alignment
interval t

5 87.3 88.4
10 87.5 88.7
20 87.1 87.1

Updated neurons
proportion p

0.3 87.4 87.8
0.5 87.5 88.7
0.8 87.1 87.9

Table 5: Parameter study of FedPFT on QNLI

using proxy sub-model; 2) FedPFT B outperforms FedOT,
showing the effectiveness of the sub-FM construction mod-
ule in FedPFT; and 3) FedPFT outperforms FedPFT B, em-
phasizing the necessity of sub-FM alignment during FL fine-
tuning. Results on other text and vision datasets are presented
in Appendix.F.

4.5 Parameter Study
In addition, we conduct a study to investigate the impact of
two hyper-parameters in the sub-FM alignment module: the
interval t between two alignments during FL fine-tuning and
the proportion p of neurons that need to be updated for each
alignment. The effects of two hyper-parameters on the QNLI
dataset are presented in Table.5, suggesting that both t and p
should be chosen moderately. Regarding t, longer alignment
intervals lead to the accumulation of gradient errors, while
shorter intervals can prohibit the adaptation of downstream
tasks. Concerning p, it is crucial to strike a balance between
updating an adequate proportion of neurons and avoiding ex-
cessive disruption to local fine-tuning.

5 Conclusion
This paper introduces FedPFT, a federated fine-tuning frame-
work designed for Foundation Models (FMs). FedPFT ad-
dresses critical challenges related to insufficient FM fine-
tuning and the accumulation of gradient errors by employing
layer-wise compression for sub-FM construction and align-
ing sub-FM through a two-step distillation process, respec-
tively. This novel framework achieves optimal downstream
task adaptation of FM, resulting in an effective fine-tuned FM
with superior performance, all without direct sharing of either
server FM or client data. Experimental results across seven
datasets showcase the effectiveness of FedPFT. In the future,
we aim to extend the application of FedPFT to larger-scale
FMs for tackling more complex downstream tasks.
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A Proof of Theorem 1
Proof. Our assumption that ▽f is Lipschitz continuous with
constant L1 implies that ▽2f(x) ⪯ L1I , or equivalently that
▽2f(x) − L1I is a negative semidefinite matrix. Using this
fact, we can perform a quadratic expansion of f around f(x)
and obtain the following inequality:

f(y) ≤ f(x) + ▽f(x)T (y − x) +
1

2
▽2f(x)∥y − x∥22

≤ f(x) + ▽f(x)T (y − x) +
L1

2
∥y − x∥22

(15)

Since we run gradient descent on f ′ and synchronize the gra-
dient to f and ▽f ′−▽f = δ, let’s plug in the gradient descent
update by letting y = x+ = x−η▽f ′(x) = x−η▽f(x)−ηδ.
We then get:

f(x+) ≤ f(x) + ▽f(x)T (x+ − x) +
L1

2
∥x+ − x∥22

f(x+) ≤ f(x) + ▽f(x)T (−η▽f(x)− ηδ)

+
L1

2
∥η▽f(x) + ηδ∥22

f(x+) ≤ f(x)− η(∥▽f(x)∥22 + ▽f(x)T δ)

+
L1η

2

2
∥▽f(x) + δ∥22

f(x+) ≤ f(x)− η(∥▽f(x)∥22 + ▽f(x)T δ)

+
L1η

2

2
(∥▽f(x)∥22 + ∥δ∥22)

f(x+) ≤ f(x)− (1− L1η

2
)η∥▽f(x)∥22 − η▽f(x)T δ

+
L1η

2

2
∥δ∥22

(16)

Using η ≤ 1
L1

, we know that −(1− L1η
2 ) ≤ − 1

2 and L1η
2

2 ≤
η
2 . Plugging them into (16), we can get the following:

f(x+) ≤ f(x)− η

2
∥▽f(x)∥22 − η▽f(x)T δ +

η

2
∥δ∥22

= f(x)− η

2
(∥▽f(x) + δ∥22 − 2∥δ∥22)

= f(x)− η

2
(∥▽f ′(x)∥22 − 2∥δ∥22)

(17)

If we have

∥δ∥22<
1

2
∥▽f ′∥22, (18)

then

f(x+) ≤ f(x). (19)

This implies that when (18) is satisfied, the value of f strictly
decreases with each iteration of gradient decent of f ′ until it
reaches the optimal value f(x) = f(x∗).

Next, we can bound f(x+), the objective value at the
next iteration, in terms of f(x∗), the optimal objective value.
Since f is convex, we can write:

f(x∗) ≥ f(x) + ▽f(x)T (x∗ − x), (20)

f(x) ≤ f(x∗) + ▽f(x)T (x− x∗), (21)

plugging them into (17), we obtain:

f(x+) ≤ f(x∗) + ▽f(x)T (x− x∗)

− η

2
(∥▽f ′(x)∥22 − 2∥δ∥22)

f(x+)− f(x∗) ≤ (▽f ′(x)− δ)T (x− x∗)

− η

2
(∥▽f ′(x)∥22 − 2∥δ∥22)

f(x+)− f(x∗) ≤ 1

2η
(2η▽f ′(x)T (x− x∗)− η2∥▽f ′(x)∥22)

− δT (x− x∗) + η∥δ∥22

f(x+)− f(x∗) ≤ 1

2η
(2η▽f ′(x)T (x− x∗)− η2∥▽f ′(x)∥22

− ∥x− x∗∥22) +
1

2η
∥x− x∗∥22

− δT (x− x∗) + η∥δ∥22

f(x+)− f(x∗) ≤ − 1

2η
∥x− x∗ − η▽f ′(x)∥22 +

1

2η
∥x− x∗∥22

− δT (x− x∗) + η∥δ∥22

f(x+)− f(x∗) ≤ 1

2η
(∥x− x∗∥22 − ∥x+ − x∗∥22)

− δT (x− x∗) + η∥δ∥22
(22)

This inequality holds for x+ on every update iteration. Sum-
ming over iterations, we get:

k∑
i=1

f(x(i))− f(x∗) ≤
k∑

i=1

1

2η
(∥x(i−1) − x∗∥22 − ∥x(i) − x∗∥22)

− δ(i)T (x(i) − x∗) + η∥δ(i)∥22
k∑

i=1

f(x(i))− f(x∗) ≤ 1

2η
(∥x(0) − x∗∥22 − ∥x(k) − x∗∥22)

+

k∑
i=1

η∥δ(i)∥22 − δ(i)T (x(i) − x∗)

k∑
i=1

f(x(i))− f(x∗) ≤ 1

2η
∥x(0) − x∗∥22

+

k∑
i=1

η∥δ(i)∥22 − δ(i)T (x(i) − x∗)

(23)
Then, using the fact that f decreasing on every iteration, we
can conclude that:

f(x(k))− f(x∗) ≤ 1

k

k∑
i=1

f(x(i))− f(x∗)

f(x(k))− f(x∗) ≤ 1

2ηk
∥x(0) − x∗∥22

+
1

k

k∑
i=1

η∥δ(i)∥22 − δ(i)T (x(i) − x∗)

(24)



If we have

η

k∑
i=1

∥δ(i)∥22 ≤
k∑

i=1

⟨δ(i), x(i) − x∗⟩, (25)

then

f(x(k))− f(x∗) ≤ ∥x(0) − x∗∥22
2ηk

(26)

This implies that when (25) is satisfied, gradient descent of f
with the help of f ′ is guaranteed to converge and converges
with rate O( 1k ).

B Proof of Theorem 2
Proof. Based on the premise, we have:

loss = f(y), y = xAxTxBC;

loss′ = f(y′), y′ = xAxTxBC ′.
(27)

According to the chain rule, we can obtain:

∂loss

∂A
= xT ∂loss

∂y
CTBTxTx,

∂loss′

∂A
= xT ∂loss′

∂y′
C ′TBTxTx,

(28)

then

∥∂loss
′

∂A
− ∂loss

∂A
∥22 = ∥xT (

∂loss

∂y
CT − ∂loss′

∂y′
C ′T )BTxTx∥22

∥∂loss
′

∂A
− ∂loss

∂A
∥22 ≤ ∥x∥62 · ∥B∥22 · ∥

∂loss

∂y
CT − ∂loss′

∂y′
C ′T ∥22

∥∂loss
′

∂A
− ∂loss

∂A
∥22 ≤ ∥x∥62 · ∥B∥22 · ∥

∂loss

∂y
CT − ∂loss′

∂y′
CT

+
∂loss′

∂y′
CT − ∂loss′

∂y′
C ′T ∥22

∥∂loss
′

∂A
− ∂loss

∂A
∥22 ≤ ∥x∥62 · ∥B∥22 · ∥C∥22 · ∥

∂loss

∂y
− ∂loss′

∂y′
∥22

+ ∥x∥62 · ∥B∥22 · ∥
∂loss′

∂y′
∥22 · ∥C − C ′∥22.

(29)
Additionally, our assumption that the gradient of loss func-
tion loss = f(y) is Lipschitz continuous with constant L3>0
implies that

∥∂loss
∂y

− ∂loss′

∂y′
∥22 ≤ L3∥y − y′∥22. (30)

Plugging this into (29), we have

∥∂loss
′

∂A
− ∂loss

∂A
∥22 ≤ L3∥x∥62 · ∥B∥22 · ∥C∥22 · ∥y − y′∥22

+ ∥x∥62 · ∥B∥22 · ∥
∂loss′

∂y′
∥22 · ∥C − C ′∥22.

(31)
let

K1 = L3∥x∥62 · ∥B∥22 · ∥C∥22

K2 = ∥x∥62 · ∥B∥22 · ∥
∂loss′

∂y′
∥22

(32)

then we have

∥∂loss
′

∂A
− ∂loss

∂A
∥22 ≤ K1ϵ1 +K2ϵ2 (33)

Similarly, it can be derived that there exists the constant
K3>0 and K4>0 such that:

∥∂loss
′

∂B
− ∂loss

∂B
∥22 ≤ K3ϵ1 +K4ϵ2. (34)

Let K1 = max(K1,K3), K2 = max(K2,K4), then Theo-
rem 2 is proved.

C Experimental Details
C.1 Datasets
SST-2
The Stanford Sentiment Treebank [Socher et al., 2013] is a
binary single-sentence classification task consisting of sen-
tences extracted from movie reviews with human annotations
of their sentiment. It is consists of a training set of 67350 ex-
amples, a development set of 873 examples, and a test set of
1821 examples.

QNLI
Question Natural Language Inference is a version of the Stan-
ford Question Answering Dataset which has been converted
to a binary classification task [Wang et al., 2018]. It is con-
sists of a training set of 104743 examples, a development set
of 5463 examples, and a test set of 5461 examples.

MNLI
Multi-Genre Natural Language Inference is a large-scale,
crowdsourced entailment classification task [Williams et al.,
2017]. It is consists of a training set of 392702 examples,
a matched development set of 9815 examples, a mismatched
development set of 9832 examples, a matched test set of 9796
examples, and a mismatched test set of 9847 examples.

QQP
Quora Question Pairs is a binary classification task where
the goal is to determine if two questions asked on Quora are
semantically equivalent 3. It is consists of a training set of
363870 examples, a development set of 40431 examples, and
a test set of 390965 examples.

CIFAR-10 and CIFAR-100
The CIFAR-10 and CIFAR-100 are labeled subsets of the 80
million tiny images dataset [Birhane and Prabhu, 2021]. The
CIFAR-10 dataset consists of 60000 32x32 colour images in
10 classes, with 6000 images per class, and there are 50000
training images and 10000 test images. The CIFAR-100
dataset is just like the CIFAR-10, except it has 100 classes
containing 600 images each, and there are 500 training im-
ages and 100 testing images per class. The 100 classes in the
CIFAR-100 are grouped into 20 superclasses. Each image
comes with a ”fine” label (the class to which it belongs) and
a ”coarse” label (the superclass to which it belongs).

3https://quoradata.quora.com/First-Quora-Dataset-Release-
Question-Pairs



Method CIFAR-100 Flowers Transformers
Params

FedPETuning 89.3 99.7 81M
FedOT 81.1 82.1 47M
FedPFT 85.5 98.1 47M

Table 6: Other I.I.D experimental results on ViT. A higher value
indicates better accuracy.

Flowers
Oxford 102 Flower is an image classification dataset consist-
ing of 102 flower categories. The flowers were chosen to be
flowers commonly occurring in the United Kingdom. Each
class consists of between 40 and 258 images. It is consists of
a training set of 6149 examples, a development set of 1020
examples, and a test set of 1020 examples.

C.2 Hyper-parameters
The number of distillation epochs for alignment before FL
training for NLP sub-FMs and CV sub-FM is 5, 50, re-
spectively. For distillation of NLP FMs, the learning rate is
6e − 4, the batch zise is 2048, and the weight decay is 0.01.
For distillation of CV FMs, the learning rate is 1e − 3, the
batch size is 4096, and the weight decay is 0.1. All distil-
lation use the linear learning rate decay with warm up ra-
tio of 0.06 and the gradient clipping with max grad norm
of 1. For client local fine-tuning, the fine-tuning method
is Lora [Hu et al., 2021], the fine-tuning epoch is 1. For
text datasets, we perform a grid search to find the opti-
mal parameters, with batch size∈ {8, 16, 32} and learning
rate∈ {4e − 4, 8e − 4, 1e − 3}. For CIFAR-10 and CIFAR-
100 datasets, we perform a grid search to find the optimal
parameters, with batch size∈ {64, 128, 256} and learning
rate∈ {3e− 3, 8e− 3, 1e− 2}. For Flowers dataset, we per-
form a grid search to find the optimal parameters, with batch
size∈ {16, 32, 64} and learning rate∈ {3e−3, 8e−3, 1e−2}.
For FedPFT, alignment is performed every 10 rounds during
FL training, with the number of alignment epochs for NLP
and CV being 0.02 and 0.2, respectively, and the proportion
of neurons that need to be updated during alignment being
0.5. The ratio of eliminated neurons in FFN is fixed at 0.75.

D Experimental results on I.I.D scenario
The I.I.D experiment results on CIFAR-100 and Flowers
datasets are show in Table.6. It is shown that FedPFT still
outperforms FedOT and achieves competitive performance
closer to FedPETuning.

E Experimental results on Non-I.I.D scenario
Visualisations of the label distributions of the three datasets,
SST-2, QNLI and CIFAR-10, under different Non-I.I.D sce-
narios are shown in Fig.4. The results of Non-I.I.D exper-
iments on CIFAR-10 are shown in Table.7. Similarly, We
observe that: 1) the performance of all methods declines as
the degree of Non-I.I.D increases; 2) our FedPFT still outper-
forms FedOT and achieves competitive performance closer to
FedPETuning.

Method CIFAR-10 Transformers
ParamsDir-1.0 Dir-5.0 Dir-10.0

FedPETuning 97.8 98.0 98.2 81M
FedOT 95.1 95.4 95.5 47M
FedPFT 96.5 96.7 97.1 47M

Table 7: Non-IID experimental results on CIFAR-10. A higher
value indicates better accuracy.

Dataset SST-2 CIFAR-10
Model BERT RoBERTa ViT
FedOT 90.4 92.8 95.5

FedPFT N 84.2 89.1 95.1
FedPFT B 90.8 92.9 96.9
FedPFT D 88.4 89.7 96.0

FedPFT(ours) 91.6 93.1 97.2

Table 8: Ablation study of FedPFT on SST-2 and CIFAR-10.

F Ablation study on other datasets
The experiment results of ablation study on SST-2 and
CIFAR-10 are shown in Table.8. The experimental results
exemplify the respective importance of the sub-FM Construc-
tion Module and the Sub-FM Alignment Module in FedPFT.

G Extension experimenal results
We extended the experiment in three parts: parameter study
on CIFAR-10 (shown in Table.9), a new evaluation metric
on QQP (shown in Table.10), and convergence analysis of
FedPFT (shown in Table.11).

Hyper-Params t p
5 10 20 0.1 0.5 0.9

Accuracy 96.9 97.2 97.1 96.9 97.2 96.6

Table 9: Parameter study of FedPFT on CIFAR-10.

Method BERT RoBERTa
F1 rounds F1 rounds

FedPETuning 83.5 235 84.7 116
FedOT 77.9 287 77.7 80
FedPFT 81.5 274 82.6 98

Table 10: F1 score of three methods on QQP. ’rounds’ is total com-
munication rounds of required for the model to converge.

Method SST-2 QNLI QQP MNLI
FedPETuning 18 6 4 11

FedOT 34 128 287 184
FedPFT 21 31 24 23

Table 11: Communication rounds required to achieve the same
performance by all methods. We list the communication rounds
required for all methods to achieve the same performance as FedOT.



(a) SST-2 Dir-1.0 (b) SST-2 Dir-5.0 (c) SST-2 Dir-10.0

(d) QNLI Dir-1.0 (e) QNLI Dir-5.0 (f) QNLI Dir-10.0

(g) CIFAR-10 Dir-1.0 (h) CIFAR-10 Dir-5.0 (i) CIFAR-10 Dir-10.0

Figure 4: Visualisations of the label distributions of SST-2, QNLI, and CIFAR-10
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