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Abstract

Collaborative fairness in federated learning rewards high-contribution clients
with high-performance models when multiple clients train a machine learning
model cooperatively. Existing approaches ignore the information on data dis-
tribution when evaluating the clients’ data quality, resulting in a mismatch
between the reward allocation and the real data quality of clients under differ-
ent data heterogeneity settings. To address this problem, we propose a novel
Federated learning framework with Adaptive data Value Evaluation mechanism
(FedAVE) to ensure collaborative fairness without affecting the predictive per-
formance of models. First, an adaptive reputation calculation module is de-
signed to generate reputations that match the clients’ contributions based on
the information of their data distribution, respectively. Second, a dynamic
gradient reward distribution module is devised to allocate a certain number of
aggregated model parameter updates/gradients as the rewards corresponding
to the reputations and the data distribution information. Extensive experi-
ments on three public benchmarks show that the proposed FedAVE outper-
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forms all baseline methods in terms of fairness, and achieves comparable per-
formance to the state-of-the-art methods in terms of accuracy. Code available
at https://github.com/wangzihuixmu/FedAVE.

Keywords: Federated learning, Collaborative fairness, Reputation

1. Introduction

Federated Learning (FL) is a promising approach of large-scale collaborative
learning that allows clients to train a global model together while preserving
the local data privacy [1, 2, 3]. As the global model is expected to outperform
the locally trained model, FL attracts wide attention in different applications,5

including healthcare, criminal justice, etc [4, 5, 6].
Currently, most FL methods [1, 2, 3, 7] distribute the same model to all

clients in each communication round without considering their contributions
to the system. These approaches tend to discourage high-quality clients from
actively participating in FL. [8, 9, 10, 11]. As shown in Figure 1, the contri-10

bution of each client is different to the system because they have different data
sizes and distributions, such as Client1 and Client2. The framework should
distribute different models (more corners denote more rewards) based on their
contributions (Ground truth) to make sure collaborative fairness. In this way,
clients with high contributions are willing to join FL.15

In FL, existing collaborative fairness methods include two steps[11, 12]: con-
tribution evaluation (i.e., reputation) and reward allocation[13, 14]. Generally,
there are three methods for achieving collaborative fairness in FL: the similarity-
based method (CGSV[13]), the data size-based method (CFFL (a)[14]), and
the diversity of labels-based method (CFFL (b)[14]). CGSV recognizes higher-20

contribution clients as those whose gradients are more similar to the averaging
gradient than others. Subsequently, they are rewarded with more amounts
(i.e., the hyperbolic tangent of the contribution) of gradients. CFFL recog-
nizes higher-contribution clients as those whose local data and local models
are both of higher quality than others (i.e., larger data sizes in CFFL (a) or25
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more diverse labels of local data in CFFL (b) for the local data, and better
performance on the validation data for the local models). Then, they are re-
warded with more amounts (i.e., the ratio of data quality multiplying the hy-
perbolic sine of the contribution) of gradients. In summary, the two methods
(i.e., CGSV and CFFL) fail to enhance collaborative fairness when data het-30

erogeneity varies across clients. We summarize that the major limitations of
state-of-the-art methods are in twofold:

1) In the contribution evaluation phase, existing works fail to fairly evaluate
the reputations of different clients when the data heterogeneity varies. For ex-
ample, in Figure 1, the reputations of Client3 and Client4 are over-estimated35

by CGSV, as their gradients are more similar to the majority of clients’ gradi-
ents. CFFL can’t accurately estimate the ground-truth reputations for Client5

and Client2 simultaneously, as it merely uses either the local data sizes or the
label diversity to evaluate the data quality. 2) In the reward allocation phase,
the challenge lies in determining which parameters of the gradient to allocate to40

clients, given the diverse contributions of each parameter of the gradient to the
model’s performance[15, 16, 17]. For instance, small differences in the amounts
of the gradients allocated to clients may cause similar rewards (i.e., model per-
formance) among clients, leading to unfair treatments to clients with higher
contributions. In summary, the challenge of achieving collaborative fairness in45

FL has not been fully tackled when data heterogeneity varies across clients.
To address these problems, we propose a novel Federated learning frame-

work with Adaptive data Value Evaluation mechanism (FedAVE) to ensure
collaborative fairness with obtaining competitive predictive accuracy. FedAVE
contains two modules: the adaptive reputation calculation module and the dy-50

namic gradient reward distribution module. The first module is the adaptive
reputation calculation module that is designed to calculate clients’ reputations
in each round by two aspects: the performance of the local model on the val-
idation set stored in the server, which partially reflects the information of the
local dataset; and the Kullback-Leibler (KL) divergence to model the differ-55

ence between the local data and validation set. The module treats clients with
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Figure 1. Collaborative fairness in FL. We compare the FedAVE with three typical methods
(e.g. CFFL (a), CFFL (b) and CGSV) which fail to ensure collaborative fairness under dif-
ferent data heterogeneity settings because of ignoring data distribution information of clients.
The stars with different colors represent four methods and more corners denote more rewards.
The closer to the ground truth, the better the fairness.

high similarity between local dataset and the validation set as high-contributor
clients. In the dynamic gradient reward distribution module, a certain number
of aggregated model parameter gradients are allocated as rewards based on the
reputations and the data distribution information, ensuring that the rewards ob-60

tained by them have distinction significant. This mechanism guarantees fairness
in the form of the model performance.

In summary, the main contributions of this paper include the following:

• We propose a novel federated learning framework FedAVE to ensure col-
laborative fairness without affecting the performance of models under dif-65

ferent data heterogeneity settings (i.e., the data sizes and distributions are
different simultaneously among clients).

• In the contribution evaluation phase, we design an adaptive reputation
evaluation module, which fairly and accurately estimates the contributions
for different clients based on their local data distribution information.70
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• In the reward allocation phase, we conduct a dynamic gradient reward
allocation module, which significantly distinguishes the rewards (i.e., the
parameters of the gradients) to clients according to their estimated con-
tributions in each round to enhance collaborative fairness.

• Experimental results on three popular federated benchmarks show that the75

proposed FedAVE outperforms all baseline methods in terms of fairness,
and achieves comparable performance to the state-of-the-art methods in
terms of accuracy under different data heterogeneity settings.

2. Related work

In FL, designing appropriate rewards to facilitate collaboration among dif-80

ferent clients is a meaningful and essential question [1, 3, 12, 18, 19]. A well-
designed reward mechanism should contain a fairness standard, a proper reward
form, and a systematic method to ensure fairness. In the domain of fairness
within FL, we have conducted a review of related works to better comprehend
our study in comparison to existing research.85

Incentive mechanism. Some researchers design the incentive mechanism
to reward clients with monetary or the total revenue generated collaboratively.
Yu et al. [20] dynamically allocate rewards to clients in a context-aware man-
ner; consequently, the reduction of unfairness among clients is achieved when
the maximum utility is attained. Zhang et al. [21] propose an incentive mecha-90

nism based on the reputation and reverses the auction theory to reward clients
by combining their reputations with a limited budget. Although it is natu-
ral to consider monetary incentives [20, 22, 23], these methods are difficult to
implement as the value between models/datas and money is hard to balance
[24, 25].95

Egalitarian fairness. Another research direction involves egalitarian no-
tions of fairness, where all clients receive the global model that performs equally
on their local datasets [26]. q-FFL [27] proposes a modified local loss function
that provides higher optimization weights for clients with higher loss. FedFV
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[28] identifies gradient conflicts with large differences as a cause of unfairness in100

FL, and mitigates potential conflicts between clients before averaging gradients.
It is worth noting that all the clients download the same global model regardless
of their contributions to the system.

Collaborative fairness. On the contrary, recent works focus on the col-
laborative fairness of FL, which treats the global model as rewards for clients,105

excepting the models received by the clients matched their contributions. FP-
PDL [12] proposes a method for the mutual evaluation of the local credibility
mechanisms to guarantee the fairness (i.e., each client privately evaluates other
clients). Since the framework does not have a server, resulting in it is not
applied to FL. CGSV [13] proposes a method based on the cosine gradient110

Shapley value, calculated by assessing the similarity between the client’s gradi-
ents and the overall gradients, to compute clients’ reputations. Subsequently,
this approach utilizes the obtained reputations for the distribution of rewards.
However, the method is hardly applied to the different data heterogeneity set-
tings, e.g., the data sizes and distributions are different simultaneously among115

clients. CFFL [14] achieves collaborative fairness by appending a validation set,
and the reputations are computed from the diversity of labels (or data sizes) of
the clients, along with the validation performance of the local model to allocate
rewards. Whereas, it is not suitable for the scenarios where the data hetero-
geneity varies across clients. Different from these works, the proposed FedAVE120

calculates the clients’ reputations through the local models’ performance and
the data distribution of its dataset, which accurately reflect their similarity to
the validation set. This allows us to successfully apply it to the different data
heterogeneity settings.

3. Preliminaries125

3.1. Federated learning

A FL system consists of m clients and a server node that aggregates collected
models. The goal is to train a global model (!) that minimizes the weighted
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average loss of all clients without requiring them to upload their private local
data, e.g., FedAvg [2]. First, the server randomly initializes a global model,130

!0, and distributes it to each client. Then, models are sent to the server for
aggregation after training for E number of epochs iteratively. Finally, the server
broadcasts the aggregation model to available clients for the next communication
round. These steps are repeated for a total of T times until the global model is
converged. Eq. (1) shows the traditional objective function of FL:135

min
!

F (!) =
mX

i=1

piFi(!), (1)

where ! is the global model of the aggregation, i denotes the i-th client and m

is the total number of clients. The local objective function of i-th client with
weight pi is denoted by Fi(!), where pi � 0 and

Pm
i=1 pi = 1. To minimize the

weighted average loss of all clients, FedAvg randomly samples a subset St of m
clients, 0 < i  m, to update the global model at communication round t:140

!t+1 =
1

|St|
X

i2St

pi!
t
i , (2)

where !t+1 denotes the global model at communication round t+1, pi = niPm
j=1 nj

denotes the weight of i-th client and ni is the data sizes of the client i. FedAvg
has been proved to be efficient in minimizing the objective while protecting the
privacy. However, it may be unfair to the high-quality clients [13, 14].

3.2. Collaborative Fairness145

The key of reward designation is that clients who contribute more will re-
ceive more rewards [9, 29]. Different from other rewards, we design the reward
corresponding to its model’s performance. The Pearson Correlation Coefficient
is first used by [13, 14] to measure the correlation between clients’ contributions
and the reward they are received. It will be close to 1 when the client’s reward150

is positively correlated with their contribution (i.e., client who contributes more
are allocated more rewards), and it will be close to -1 when the correlation is
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negative. Therefore the Pearson Correlation Coefficient can reflect the degree of
collaborative fairness. The definition of collaborative fairness given as follows:

Definition 1 (Collaborative Fairness). Clients’ contribution (x) is calcu-155

lated by comparing the performance of standalone models (without collaboration)
and the performance of the final models (y) obtained by the clients after collab-
orating. The quantitative fairness computed by � := 100 ⇥ ⇢(x, y) where ⇢()
is the Pearson Correlation Coefficient. The � represents the degree of linear
correlation between x and y. The higher the connection between x and y, the160

closer � is to 100, and the better fairness of the framework.

3.3. Quantification of Fairness

To evaluate fairness reasonably, we follow[14] to quantify the collaborative
fairness with Pearson Correlation Coefficient � := 100 ⇥ ⇢(x, y) 2 [-100, 100]
between client contributions (x: test accuracies of standalone models which are165

optimized by their own local datasets) and client rewards (y: test accuracies of
local models after collaboration).

Agent with higher standalone accuracies indicates contribute more. x can
be written into Eq. (3), where sacci represents the performance of the client i’s
standalone model:170

x = {sacc1, sacc2, sacc3, ..., saccm}, (3)

y can be written into Eq. (4), where accj denotes the performance of the client
j’s local model after collaborating:

y = {acc1, acc2, acc3, ..., accm}. (4)

Finally, we quantify the collaboration fairness � by Eq. (5):

�xy = 100⇥

mP
i=1

(xi � x̄)(yi � ȳ)

(m� 1)sxsy
, (5)
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where x̄ and ȳ denote the mean of x and y, sx and sy denote the standard
deviation of x and y. The range of values of � is [-100, 100], within higher �175

implying better fairness of framework.

4. Methodology

The key of achieving collaborative fairness is to reasonably allocate the model
according to their contributions. In particular, we manage the gradients down-
loading of clients based on their reputations to ensure the system fairness. The180

reputations are managed by the server and invisible to clients. In this section,
we will introduce the workflow and architecture of the FedAVE, which mainly
consists the Adaptive Reputation Calculation (ARC) module and the Dynamic
Gradients Reward distribution (DGR) module.

185

4.1. Overview

Figure 2 shows an overview of the proposed FedAVE framework. After
randomly assigning a global model to the clients, a round of FedAVE communi-
cation consists of the following steps: client sampling, global aggregation, client
reputation calculation, and reward distribution.190

Step 1 Since our scene contains a few clients, we use full sampling to ensure all
the clients joining FL in each round.
Step 2 Global aggregation step is used to generate a new global model with
the gradients of the clients’ model.
Step 3 Measuring the clients’ reputations in each round based on the similarity195

between the clients’ dataset and the validation set.
Step 4 The server distributes the aggregated model parameter gradients to
clients corresponding to their reputations.

The following sections will discuss the detailed procedures and theoretical basis200

of the FedAVE, as summarized in Algorithm 1.

9
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Figure 2. The FedAVE framework. The framework consists of two modules: (1) Adaptive
Reputation Calculation module to compute the reputations of the clients with different con-
tributions; (2) Dynamic Gradients Reward Distribution module to distribute model rewards
based on the reputations.
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Table 1: Main notations

Notations Description

m Total number of clients
�wt

g The global model in round t

wt
i Client i’s model in round t

�wt
i Client i’s gradients in round t

�w(t)
⇤i The reward gradients downloaded by

client i from the server
�w(St)

i Gradients uploaded by client i

to the server in round t

Fi Loss functions of client i

clip() Clipping the model parameters
ni Data sizes of client i

V Validation set
⌧ Gradient normalizing constant
� Hyperparameter
Acc(t)i The performance of the client i’s

model on the validation set in round t

r(t)i Client i’s reputation in round t

Lossi The distribution of loss values for
client i’s model tested on i’s dataset

LossV i The distribution of loss values for
client i’s model tested on V

tanh Hyperbolic tangent function
D Model parameters vector dimension
sparsify A function to distribute rewards based

on client reputation

11



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Algorithm 1 FedAVE
Input: local epochs E, batch size B, number of clients m, data sizes owned by each client ni,

validation set V , gradient normalizing constant �, hyper-parameter �, hyperparameter
↵, model parameters vector dimension D.

Client i

1: Local gradients: �w
(t)
i := rFi(w

(t�1)
i )

2: Clips gradients vector: �w
(t)
i := clip(�wt

i)

3: Send the gradients �(wSt
i ) = �(w

(t)
i ) ⇤ ⌧/||�(wt

i)|| to the server in round t
4: Download reward gradients based on the ”largest values” criteria �w

(t)
⇤i , and integrate

with local model: w
(t+1)
i = w

(t)
i +�w

(t)
⇤i

Server

Aggregation:
5: �wt

g =
mP
i=1

niPm
i=1 ni

⇤�(wSt
i )

Calculate the reputation of client i in round t:
6: for i 2 R do
7: Acc

(t)
i = V (w

(t)
i +�w

(t)
i )

8: ⇠
r
(t)
i = Acc

(t)
i /KL(Loss

(t)
i , Loss

(t)
V i)

9: r
(t)
i = ↵ ⇤ r

(t�1)
i + (1� ↵) ⇤ ⇠

r
(t)
i

10: Normalized reputation: r
(t)
i =

r
(t)
iPm

i=1 r
(t)
i

11: end for
Distribute rewards based on their reputations:

12: for i, j 2 R do
13: quotati := [D ⇥ tanh(�r

(t)
i )/(maxj2N tanh(�r

(t)
j ) ⇤KL(Loss

(t)
i , Loss

(t)
V i))]

14: Reward of client i:
15: �w

(t)
⇤i = sparsify(�w

(t)
g , quotati)

16: end for

12
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4.2. FedAVE

To improve the performance of the global model, it is necessary to make
full use of the information of clients. However, existing collaborative fairness
methods all tend to favor high-contributor clients when aggregation. As a result,205

the data from low-contributors are underrepresented by the models, leading to
a decrease in the overall quality of the models. To make the best use of all the
local data, we employ Eq. (6) and Eq. (7) to calculate the aggregated model in
round t as follows, denoted as �wt

g:

�(wSt
i ) = �w(t)

i ⇤ ⌧/||�w(t)
i ||, (6)

�wt
g =

mX

i=1

niPm
i=1 ni

⇤�(wSt
i ), (7)

where �w(t)
i := rFi(w

(t�1)
i ) is the model gradient updated by client i, ni is the210

data sizes of the client i, �(wSt
i ) is the gradient that the client i has uploaded

to the server, and ⌧ is a normalization coefficient used to prevent the gradient
explosion [30, 31]. In FL, the model parameters uploaded by clients may be
quite different. Based on the normalization of the gradients of clients’ uploads,
Eq. (6) can prevent the aggregation model from being dominated by a single215

one, thereby fostering the development of the system [13, 19].
ARC module. Next, we present the technical details of the ARC module,
which employs data distribution more effectively than CFFL in calculating the
reputations. This provides it with a distinct advantage under different data
heterogeneity settings. Inspired by FedKD [32], we propose the module to cal-
culate the reputations of clients through the distribution of the loss value, which
reflects part of the information in the dataset. We assumed the validation set
to be standard in the server (i.e., the same data distribution to the union of all
the local data). For example, the loss distribution value of testing on the lo-
cal dataset and the validation set are closer, which means the quality of clients’
data are similar to the validation set. Then, we regard them as high-contribution

13
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clients. Eq. (8) and Eq. (9) formulate the reputation r(t)i of client i in round t:

⇠
r
(t)

i = Acc(t)i /KL(Loss(t)i , Loss(t)V i), (8)

r(t)i = ↵ ⇤ r(t�1)
i + (1� ↵) ⇤ ⇠

r
(t)

i , r(t)i =
r(t)iPm
i=1 r

(t)
i

, (9)

where Acc(t)i represents the performance of the model i on the validation set,
Loss(t)i and Loss(t)V i denote the loss distribution value of the model i test on the
client i’s dataset and the validation set, respectively; ⇠

r
(t)

i is i’s reputation in
round t and ↵ is an adaptive weight. In Eq. (9), we update the reputations220

based on the current round and the previous round. Meanwhile, the reputa-
tions computed smoothly without abrupt fluctuations and eliminate the noise
generated during the training process.
DGR module. For most of the methods, clients obtain the same aggregated
gradients/model from the server in the distribution step, which leads to clients
expect better prediction performance [33, 34]. However, it is unfair and discour-
ages the clients with high quality from joining FL [14]. To guarantee fairness,
the server should allocate the corresponding aggregated model parameter gradi-
ents as rewards based on the clients’ contributions. Whereas, existing methods
distribute rewards by the computed reputations simply, such as CFFL. To im-
prove fairness, the DRG module assigns the corresponding parameter gradients
�w(t)

⇤i to client i corresponding to r(t)i as follows,

quotati := D ⇥ tanh(�r(t)i )/(maxj2N tanh(�r(t)j ) ⇤KL(Loss(t)i , Loss(t)V i)), (10)

�w(t)
⇤i = sparsify(�w(t)

g , quotati), (11)

where D is model parameters vector dimension, quotati is the number of model
parameters distributed by the server to the clients and determined by the rela-225

tive reputations, � is a hyper-parameter. Sparsifying gradient vectors denotes
that each node sorts gradients by the magnitude of the weights and only re-
ward a subset of the component based on the reputations [35, 36]. After sorting

14
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the gradients, sparsify(�w(t)
g , quota(t)i ) keeps the largest max(0, quota(t)i ) com-

ponent in �w(t)
g and zeros out all of its other components. The quality of the230

allocated model should be properly preserved to avoid model divergence during
the training stage [17]. Considering earlier studies [15, 16] that have shown a
strong correlation between a model’s weight magnitude and its importance for
model quality, we employ a parameter-cutting and allocation strategy based on
weight magnitudes. This approach not only facilitates reward allocations but235

also avoids model divergence. The notations are summarized in Table 1.

5. Experiment and Discussion

5.1. Experimental Settings

Dataset. We implement experiments on three benchmark datasets, MNIST [37],
CIFAR-10 [38] and EMNIST letters [39]. MNIST contains 60,000 training and240

10,000 testing images, whose sizes are 28 by 28 pixels, with labels ranging from
0 to 9. CIFAR-10 is a standard image classification dataset of size 32 by 32
pixels and contains 50,000 training and 10,000 testing images (1000 images per
label) from 10 different labels. EMNIST letters is a 28 by 28 pixels classification
dataset that includes 128,000 training and 20,800 test images from 26 distinct245

labels.
Baseline. We compare the FedAVE with the following state-of-the-art meth-
ods:

• FedAvg [2] is currently the most popular framework and it will distribute
the same rewards to clients.250

• CFFL [14] achieves collaborative fairness by appending a validation set,
to fairly distribute rewards, reputations are computed from the diversity
of labels (or data sizes) of the clients and the validation performance of
the local model.

• CGSV [13] achieves collaborative fairness based on cosine gradient Shapley255

value that is calculated by the similarity between the clients’ gradients

15
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and the overall gradients to evaluate their contributions and use them as
reputations to distribute rewards.

• A Standalone framework where clients train local models alone without
collaborative.260

Data splits. We constructe three heterogeneous settings by the clients’ data
sizes and distributions. For imbalance data sizes (POW) [13], we follow a
power law to make the clients have different data sizes with the same classes,
where a larger local data size suggests a higher similarity to the server validation
set. For imbalanced class numbers (CLA) [13], we exchange the number of265

classes, while keeping their data sizes at 600 (MNIST) / 2000 (CIFAR-10). For
example, clients 1, 2, 3, 4 and 5 respectively own datasets with 1, 3, 5, 7 and
10 classes, and the similarity of their data to the server validation set increases
with the number of classes owned by them. For imbalanced data sizes and
class numbers (DIR), we follow [40, 41, 42] to construct real-world statistical270

heterogeneity with Dirichlet distribution that makes clients have different data
sizes and class numbers, where a more standard data distribution (i.e., a larger
data size and a more diverse distribution of classes in data) suggests a higher
similarity to the server validation set. In particular, we sample pli ⇠ Dir(�0)

and allocate a proportion of pli of the data to client i with class l, where Dir(�0)275

is the Dirichlet distribution with a parameter of �0. In FL, the validation set,
assumed to be IID (independent and identically distributed), can be stored on
the server, but its size is so limited that it cannot be independently used to
train a useful model. Therefore, rewarding participants differently is needed to
enhance collaborative fairness, which motivates the participants to contribute280

the local data to improve the quality of the global model, especially in a com-
petitive environment [13, 14]. To compare with CFFL fairly, we constructed
the validation set by splitting 10% evenly distributed data from the original
training set randomly as same as CFFL [14].
Hyper-Parameters. On the MNIST dataset, we use a 2-layer convolutional285

neural network (CNN) [43]. The hyperparameters are: batch size B = 32, learn-
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ing rate lr = 0.15 for P = 10, local epochs E = 3, gradient clipping between
[�0.001, 0.001], the moving average coefficient ↵ = 0.95, the gradient normal-
izing constant � = 0.5, hyperparameter � = 1.5. On the CIFAR-10 dataset,
we employ a 3-layer CNN [44]. The hyperparameters are: batch size B = 128,290

learning rate lr = 0.015 for P = 10, local epochs E = 3, gradient clipping
between [�0.001, 0.001], the moving average coefficient ↵ = 0.95, the gradient
normalizing constant � = 0.15, hyperparameter � = 1.5. On the EMNIST let-
ters dataset, we employ the ResNet18 network [45]. The hyperparameters are:
batch size B = 128, learning rate lr = 0.15 for P = 10, local epochs E = 1, gra-295

dient clipping between [�0.001, 0.001], the moving average coefficient ↵ = 0.95,
the gradient normalizing constant � = 0.15, hyperparameter � = 1.5.

5.2. Experiment Results

We evaluate the validity of the FedAVE on two metrics: 1) fairness; 2) the
maximum predictive performance of the client’s model.300

Fairness comparison. To verify the effectiveness of FedAVE, we compare a
few algorithms in the different heterogeneous settings under the number of 10
clients. Table 2 shows the results of fairness results (the Pearson Correlation Co-
efficient between the standalone performance and the final model performance)
achieved by the baselines on three datasets. The standalone performance re-305

mains unaffected by the methods employed. In our comparison, it is used to
represent the client’s contribution, facilitating a fair evaluation of results across
different methods. Table 2 shows that our method achieves high fairness of
over 84%, while the commonly used FedAvg whose minimum fairness is 6.52%
performs not well. For the CLA data partition on MNIST, CFFL outperforms310

our method by 2.03% in fairness. The reason is that the total number of the di-
versity of labels reflect its reputation accurately at this time, while the method
of CFFL is not suitable for DIR. For the DIR (0.1) data partition on CIFAR-10,
although CGSV outperforms our method by 3.05% in fairness, we achieve an
overall accuracy improvement of +20.43%. This demonstrates the superiority of315

our method over CGSV. Table 2 indicates that the proposed FedAVE compares
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favorably against the state-of-the-art methods in terms of fairness, which means
that our notion of fairness: a high-contribution client can get the model with
better performance. We also observe that FedAvg always get lower fairness than
FedAVE, which is obvious as they don’t consider the concept of fairness well in320

the framework.

Table 2: Fairness results (%) of different frameworks in various heterogeneous settings. A
higher value means better fairness.

Dataset MNIST CIFAR-10 EMNIST letters
No.Agents 10 10 10

Data Partition POW CLA DIR (0.1) DIR (0.2) DIR (0.3) POW CLA DIR (0.1) DIR (0.2) DIR (0.3) POW CLA DIR (0.1) DIR (0.2) DIR (0.3)
FedAvg[2] 49.47 64.17 20.73 6.52 50.68 -20.66 88.92 -30.73 86.88 79.02 -4.18 71.61 23.38 37.23 13.72
CFFL[14] 95.11 99.82 - - - 79.95 99.74 - - - 74.98 87.43 - - -
CGSV[13] 91.20 92.32 66.81 71.54 93.29 95.48 95.46 77.45 80.33 71.79 99.21 79.76 51.34 51.81 38.45

Ours 97.59 97.79 93.62 84.22 94.78 99.33 97.89 74.40 98.36 91.87 95.48 89.77 81.24 75.57 69.69

Predictive performance. Table 3 reports the best accuracy achieved among
clients. Due to our FedAVE, which allows clients to obtain different final models,
we expect that the client contributes the most to have the maximum reward. It
can be found that FedAVE can get comparable accuracy to FedAvg, and consis-325

tently surpass the Standalone. For example, for CLA data partition on MNIST,
we observe that our result obtains 93.23%, which is higher than Standalone
(92.19%) and CGSV (91.40%), and slightly lower than FedAvg (95.87%). In
particular, our method achieves the same maximum accuracy compared with
FedAvg in DIR (0.2) data partition on MNIST. Figure 3 shows the clients’330

test accuracy changes with the communication rounds increase on MNIST and
CIFAR-10 in different scenarios. As the data sizes and label categories owned by
clients vary in FL, they contribute differently to the system. The proposed Fe-
dAVE calculates corresponding reputations based on the clients’ contributions,
and then dynamically allocates rewards according to the reputations. Finally,335

each client will converge to a different model and eventually get different test
accuracy. Specifically, for CLA data partition on CIFAR10, the model’s perfor-
mance of the low-quality clients decline as the communication rounds increasing.
Since the significant difference in contributions among the clients in CLA data
partition, the rewards of some low-quality clients received are fixed and lower,340
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which changes the preference of the models and decreases the model’s perfor-
mance. Figure 4 shows the distributions of the ground-truth contributions (i.e.,
the blue bars of Standalone) and the allocated rewards by FedAVE (i.e., the
orange bars of FedAVE) under three cases (i.e., CLA in MNIST, CIFAR10 and
EMNIST letters). The consistency between the contributions and the rewards345

confirms the ability of our proposed FedAVE in enhancing collaborative fairness.

Table 3: The maximum test accuracy (%) over three public benchmarks achieved by different
baselines.

Dataset MNIST CIFAR-10 EMNIST letters
No.Agents 10 10 10

Data Partition POW CLA DIR (0.1) DIR (0.2) DIR (0.3) POW CLA DIR (0.1) DIR (0.2) DIR (0.3) POW CLA DIR (0.1) DIR (0.2) DIR (0.3)
Standalone 94.79 92.19 65.17 71.64 85.73 48.66 43.13 30.80 33.25 38.03 88.07 85.14 43.94 55.62 70.42
FedAvg[2] 97.67 95.87 98.74 98.76 98.94 59.94 52.40 60.77 61.23 62.53 92.26 90.24 89.79 89.33 89.93
CFFL[14] 91.78 88.35 - - - 44.20 48.66 - - - 86.87 81.72 - - -
CGSV[13] 96.00 91.40 96.09 98.17 98.80 58.13 41.49 33.35 44.86 49.31 91.6 89.77 87.68 88.41 87.8

Ours 97.60 93.23 96.59 98.76 98.74 59.91 50.82 53.78 55.99 54.42 92.06 90.07 88.19 87.07 89.4

Ablation study. To examine the effectiveness of the two individual modules
in the FedAVE, a series of ablation experiments are conducted on MNIST, as
shown in Table 4. FedAVE|r�q� denotes the model without the data distribu-
tion information. FedAVE|r� overlooks the information of the data distribution350

in the ARC module. FedAVE|q� lacks of the information on the data distribu-
tion in the GED module. Table 4 shows that our proposed method improves
fairness compared to other variants in each scenario. For example, for the DIR
(0.2) data partition on MNIST, our method improves the fairness by 57.35%,
17.14%, and 21.3%, respectively. The ablation study shows that the two de-355

signed modules in the FedAVE are indispensable and important in improving
collaborative fairness.
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Table 4: Ablation studies of proposed method on MNIST. Fairness results (%) of the FedAVE.

Dataset MNIST
No.Agents 10

Data Partition POW CLA DIR (0.1) DIR (0.2) DIR (0.3)
FedAVE|r�q� 39.42 81.03 64.64 26.87 56.67

FedAVE|r� 97.24 93.43 92.89 67.08 82.69
FedAVE|q� 92.21 97.65 64.87 62.92 85.53

FedAVE 97.59 97.79 93.62 84.22 94.78
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Figure 3. Test accuracy achieved by clients for MNIST (left) and CIFAR-10 (right) in each
round. From top to bottom {POW, CLA, DIR (0.1), DIR (0.2), DIR (0.3)}.
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Figure 4. Test accuracy results of Standalone and FedAVE in each client.

6. Conclusions and Future Work

In this work, we proposed FedAVE to fairly evaluate the reputations of clients
uploading models in FL. Then, the obtained reputations are employed to design360

corresponding rewards in the form of gradients. Our approach ensures that the
clients that contribute more achieve higher-quality gradients, resulting in better
models for high-quality clients. The experiments demonstrate that the FedAVE
achieves high collaborative fairness and ensures the predictive performance of
each client’s model in different heterogeneous settings.365

Currently, the FedAVE does not consider dynamic participation in FL where
clients can join or leave the system at any time. New clients who join late always
have lower reputations, which means that low contributors will be judged as
high contributors at this time. Hence, future work will investigate the dynamic
participation in FL.370
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