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Abstract
Learning the embeddings for urban regions from
human mobility data can reveal the functionality
of regions, and then enables the correlated but dis-
tinct tasks such as crime prediction. Human mo-
bility data contains rich but abundant information,
which yields to the comprehensive region embed-
dings for cross domain tasks. In this paper, we pro-
pose multi-graph fusion networks (MGFN) to en-
able the cross domain prediction tasks. First, we
integrate the graphs with spatio-temporal similar-
ity as mobility patterns through a mobility graph
fusion module. Then, in the mobility pattern joint
learning module, we design the multi-level cross-
attention mechanism to learn the comprehensive
embeddings from multiple mobility patterns based
on intra-pattern and inter-pattern messages. Fi-
nally, we conduct extensive experiments on real-
world urban datasets. Experimental results demon-
strate that the proposed MGFN outperforms the
state-of-the-art methods by up to 12.35% improve-
ment. https://github.com/wushangbin/MGFN

1 Introduction
Revealing urban region embedding aims to learn quanti-
tative representations of regions from multi-sourced data,
such as Point-of-Interests (POI), check-in, and human mo-
bility [Wang and Li, 2017]. Human mobility data reflects
the human interactions and cooperation, and thus can be used
to conduct distinct tasks such as epidemic [Wu et al., 2021],
economics [Xu et al., 2020], crime [Xia et al., 2021] predic-
tion, etc.

The cross-domain downstream tasks such as crime predic-
tion and check-in prediction, are used to verify the effective-
ness of region embeddings. Existing studies [Du et al., 2019;
Wang and Li, 2017; Yao et al., 2018] taking all detailed time-
series mobility records as input, could merely learn a specific
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Figure 1: A motivating example. The complexity of mobility pat-
terns depends on both urban periodicity and regional functionality
distribution. For two regions (A is a residential area, and B is a office
area), there could be two distinct patterns (i.e., variation, similarity).

representation (e.g., change of traffic flows), rather than gen-
eralized urban region embeddings.

Human mobility data contains both abundant information
and complex patterns [Hou and Li, 2016], which yields to the
comprehensive region embeddings for cross domain tasks.
For example, Figure 1 (left) shows two repeated patterns,
which can be integrated as Pattern 1 (morning peak) and Pat-
tern 2 (weekend) respectively. Figure 1 (right) shows the
complexity of mobility patterns that there are two distinct
patterns (i.e., variation and similarity). Measuring a general-
ized region embeddings from abundant human mobility data
is challenging:

Challenge 1: How to process the fine-grained mobility
data to learn a generalized embedding? In our considered sce-
nario, learning from abundant human mobility data may only
attain the change of mobility flows, rather than a generalized
embedding.

Solution 1: Mobility graph fusion. To attain an effective
and generalized embedding from abundant human mobility
data, we first approach regions as interactive and interdepen-
dent nodes by constructing the human mobility data as mo-
bility multi-graph. Then, we aggregate mobility graphs as
selected mobility patterns according to the spatio-temporal
distance between any two mobility graphs.
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Challenge 2: How to jointly learn from mobility patterns?
Training a separate pattern mining model on each of them
may not capture comprehensive representation of regional
characteristics.

Solution 2: Mobility Pattern Joint Learning. The con-
structed mobility graphs possess regularized characteristics,
which are fully connected, directed, and weighted with mul-
tiple edges (i.e., multi-graph). Different from previous graph
representation models [Zhang et al., 2020], we take advan-
tage of above characteristics by designing two modules: (1)
Intra-pattern message passing, which utilizes structural infor-
mation inside each graph to learn a local embedding; and (2)
Inter-pattern message cross attention, which conducts atten-
tion mechanism among different graphs to jointly learn com-
prehensive region embeddings.

The major contributions of this paper are:

• We study the urban region representation problem on
fine-grained human mobility data, and propose a mobil-
ity graph fusion module with spatio-temporal dependen-
cies where redundant graphs are integrated as patterns.

• We propose a mobility pattern joint learning module,
which learns the region embedding from intra-pattern
message and inter-pattern message simultaneously in a
new manner, with the hope that the cross-graph infor-
mation can mutually enhance each other.

• Extensive experimental results show that our mobility
graph fusion method can effectively uncover the com-
plex mobility patterns. And our method outperforms
state-of-the-art baselines up to 12.35% in crime and
check-in prediction tasks in terms of various metrics.

2 Problem Statement
We provide necessary preliminary concepts in this work, and
formalize the problem of urban region embedding.

Definition 1 (Mobility Graph). The mobility graph at the
time step t is defined as a directed and weighted graph Gt =
(V,Et), where V denotes the node set with node vi ∈ V rep-
resenting region vi, and Et denotes the edge set with edge
etij = (vi, vj , ω

t
ij) ∈ Et representing the number of people

ωij move from urban region vi to vj at time t.

Definition 2 (Mobility Multi-graph). It is defined as a di-
rected and weighted multi-graph G = ∪T−1

t=0 {Gt = (V,Et)},
where Gt is a mobility graph at time t, and V denotes the
node set that corresponds to regions, and Et denotes the edge
set that corresponds to mobility condition at time t.

Definition 3 (Mobility Pattern). The mobility patterns G =
{G0,G1, ...,GN−1} are the result of fusing similar mobility
multi-graph. A pattern Gk is also a directed and weighted
graph with the same node set V as mobility multi-graph.

Definition 4 (Urban Region Embedding). Given mobility
multi-graph G, the goal of urban region embedding is to learn
a mapping function ϕ : vi → Rd to generate low dimensional
embedding Ĥ ∈ R|V |×d of each region vi ∈ V , where d rep-
resents the dimension of urban region embeddings.

Applications 
(e.g., crime/check-in 

prediction)
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Figure 2: MGFN Framework. The architecture transforms hu-
man mobility patterns into representation abilities for downstream
tasks (e.g., crime, check-in prediction). Our framework consists of
two modules: 1) Mobility Graph Fusion module where time-series
multi-graph are fused by a Mobility Graph Distance (MGD) mea-
surement method; and 2) Mobility Pattern Joint Learning module
(detailed in Figure 3) which learns the region embedding by both
intra-pattern message and inter-pattern message.

3 Methodology
In this section, we first introduce the mobility graph fusion
module, in which we propose a novel mobility graph dis-
tance to measure the similarity between different mobility
graphs. Then, we present an effective mobility pattern joint
learning module, which contains intra-pattern message pass-
ing and inter-pattern message cross attention to capture com-
prehensive regional characterise by mobility patterns. Fig-
ure 2 shows the overall architecture of our multi-graph fusion
network.

3.1 Mobility Graph Fusion

Human mobility reveals the functions and properties of urban
regions [Wang and Li, 2017]. Our intuition is that mobility
patterns are able to describe the urban region functionality
thus in favour of learning the generalized representation. For
example, estimate whether a region is work area or residen-
tial area according to the human mobility direction during the
morning peak hours (i.e., 7-9 a.m.). Therefore, instead of
learning how human mobility changes, we model the prob-
lem as time-series mobility multi-graph fusion (MGF) to ex-
tract the mobility patterns. First, we define mobility graph
distance (MGD) to calculate the distance between mobility
graphs, and apply clustering methods with MGD to cluster
similar mobility graphs. Second, in each cluster, we aggre-
gate edges in all mobility graphs to form a mobility pattern.

Spatial Structure Distance on Mobility Graph
Data with similar mean and variance may have higher simi-
larity. Specifically, for a mobility graph G, we assume that
the weight w of edge e = (u, v, w) is sampled from a Gaus-
sian distribution, and calculate its mean µG and variance σG:
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µG =
1

|E|
∑
e∈E

w, σ2
G =

1

|E|
∑
e∈E

(w − µG)
2. (1)

Then, the mean distance and variance distance between the
mobility graph Ga and Gb are expressed as:

Dmean(Ga, Gb) = |µGa − µGb
| , (2)

Dvar(Ga, Gb) =
∣∣σ2

Ga
− σ2

Gb

∣∣ . (3)

It is not sufficient to only compare the mean and variance.
For example, The mean and variance of the morning and
evening peak hours are similar, but their destinations are dif-
ferent (working and residential areas, respectively). Specifi-
cally, to pay attention to flow imbalance of two regions, we
first propose the unidirectional flow distance:

Dunif (Ga, Gb) = |UniF (Ga)− UniF (Ga)| , (4)

where UniF (Gt) =
∑

vi∈V

∑
vj∈V

∣∣ωt
ij − ωt

ji

∣∣ is the uni-
directional flow index of the graph, and Dunif (Ga, Gb) =
Dunif (Gb, Ga).

Then, to highlight the high-weight edges in mobility graph
Gt, we encode Gt as a spatial structure label matrix Et, where
each element Et

ij represents whether the weight ωt
ij of edge

etij in Gt is large enough:

Et
ij =

{
1 ωt

ij > µij

0 ωt
ij ≤ µij

, (5)

where µij = 1
T

∑T
t=1 µ

t
ij represents the mean value of edge

weight between node vi and vj over the time series.
Afterwards, the spatial structure encoding distance be-

tween mobility graphs Ga and Gb is defined as follows:

Dss(Ga, Gb) = ||Ea ⊕ Eb||1, (6)

where ⊕ is the xor operation.

Temporal Aggregation with Mobility Graph Distance
After calculating the distances between mobility graphs, con-
sidering mobility graphs with close temporal distance are
similar, we take temporal similarity into account. We define
mobility graph distance (MGD) between mobility graphs Ga

and Gb as the sum of above distance weighted by the tempo-
ral similarity with non-linearity, given as follows:

MGD(Ga, Gb) = Z(∆t)
∑

ciM(Di), (7)

where ci is the weight of i-th distance, Di could be
Dmean, Dvar, Dunif , Dss, M(·) denotes the normalization
function such as MinMaxScaler, Z(·) is an activation func-
tion. ∆t denotes the time interval between Ga and Gb.

Finally, we calculate the distance between mobility graphs
through MGD, and use the clustering method (i.e., hierarchi-
cal cluster) to aggregate mobility graphs with different pat-
terns thus to generate mobility patterns G.

+

FC Layer

Mobility Pattern

Learning Objective



···

Intra-Pattern Message 
Passing

Inter-Pattern Message 
Cross Attention

······Mobility 
Pattern

iv av

( )
i a

kl
v vm

Intra-Pattern 
Message Passing

Intra-pattern 
message

······

ivInter-Pattern 
Message Cross 

Attention

Inter-pattern 
message

iv iv iv
iv

 1
iv

k N 

Mobility 
Pattern

Figure 3: The architecture of mobility pattern joint learning mod-
ule (left) mainly consists: 1) intra-pattern massage passing (upper
right), 2) inter-pattern message cross attention (down right). The
former aggregates intra-pattern message to generate region embed-
dings in N patterns. The latter obtains a fused region embeddings
by attention mechanism using inter-pattern message.

3.2 Mobility Pattern Joint Learning
In order to learn the underlying information of urban regions
from mobility patterns, we present a mobility pattern joint
learning module as shown in Figure 3. The framework mainly
consists of two parts: intra-pattern message passing and inter-
pattern message cross attention. In the first part, the region
hidden representations are updated by intra-pattern message
propagating and aggregating in each mobility pattern thus ex-
tracting the spatial correlations between regions. In the sec-
ond part, the cross-attention mechanism is used to integrate
the inter-pattern message between the different mobility pat-
terns for each region. Comprehensive embeddings output by
two parts with residual connections [He et al., 2016] are inte-
grated by a fully connected layer to generate the final region
embeddings.

Intra-Pattern Message Passing
The property of an urban region is affected by other regions
with different impacts due to the spatial correlations. We as-
sume that such impact is highly correlated to the human mo-
bility condition of a region. To capture the spatial correla-
tions, inspired by [Gilmer et al., 2017], we design a intra-
pattern message passing layer to propagate the inner flow
messages between different regions in each mobility pattern.

This part takes mobility patterns G as input. We initialize
the 0th-layer hidden representations of regions vi in mobility
pattern Gk as input region features xk

vi
, i.e.: (0)hk

vi
= xk

vi
.

Considering the mobility flow from region vj to region vi,
inspired by [Veličković et al., 2017], we compute the message
sent along the mobility flow edge vj → vi by self-attention
mechanism. The message function is defined as follows:

mk
vivj

=
exp

(〈
Wqphk

vi
,Wkphk

vj

〉
/
√
d
)

∑
vb∈N(vi)

exp
(〈

Wqphk
vi
,Wkphk

vb

〉
/
√
d
) , (8)

where ⟨·, ·⟩ is inner product, Wqp and Wkp are two trainable
projection matrices, and N(vi) is neighbor region set of vi.
Here, the message from region vj to vi is also attention score.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2314



Afterwards, region vi aggregates the messages sent by its
neighbor regions N(vi), and updates its hidden representa-
tion by a weighed sum from N(vi), given as follows.

(l)hk
vi

=
∑

vj∈N(vi)
mk

vivj

(l)
W

(l−1)
vp hk

vj
, (9)

where (l)Wvp is a learnable projection matrix in lth layer.
Here, as the mobility pattern is a directed complete graph,
the neighbors of each region are all the regions.

To stabilize the learning process and learn information
at different conceptual levels, we extend the self-attention
mechanism to be multi-head ones [Vaswani et al., 2017].
Specifically, we concatenate F parallel attention message
functions with different learnable projections:

(l)hk
vi

= ||Ff=1

{∑
vj∈V

(f)mk
vivj

(f, l)Wvp

(l−1)
hk
vj

}
, (10)

where || represents concatenation operation, and(f)mk
vivj

represents the attention score calculated by the message func-
tion in the f th head attention.

Taking the importance of mobility directions into account,
we divide each mobility pattern Gk into two parts: source
mobility pattern Gs

k and target mobility pattern Gt
k. Here, we

regard the out-flow and in-flow mobility as node features of
source intra-pattern Xs

k and target intra-pattern Xt
k, and ap-

ply intra-message passing layer in these two type of patterns,
respectively, where Xs

k = Xt
k
⊤. To fuse these two region

representations, we project the concatenation of them to gen-
erate hidden representation of vi:

(l)hk
vi

= f((l)s hk
vi
|| (l)t hk

vi
) (11)

where f(·) represents a linear projection. The region hidden
representations hvi

= {h0
vi
, h1

vi
, ..., hN−1

vi
} extracting spatial

dependency of N mobility patterns are generated by stacking
L intra-pattern message passing layers.

Inter-Pattern Message Cross Attention
For learning the cross interactions between different mobility
patterns for a region, we allow region to interact across mo-
bility patterns via a self-attention mechanism [Vaswani et al.,
2017].

Considering the region vi in mobility pattern Ga and Gb,
let the node features in Ga and Gb are ha

vi
and hb

vi
, respec-

tively. Then, for every such pair, we compute the correlation
between Ga and Gb using attention as follows:

αvi

ab =
exp

(〈
Wqcha

vi
,Wkchb

vi

〉
/
√
d
)

∑N−1
k=0 exp

(〈
Wqcha

vi
,Wkchk

vi

〉
/
√
d
) , (12)

where Wqc and Wkc are two trainable projection matrices,
and the attention score αvi

ab reveals how Ga attends to the fea-
tures of region vi of Gb. Afterwards, we compute an inter-
pattern message for the region vi of mobility pattern Ga by a
weighed sum, where the multi-head attention is applied again:

h′a
vi

= ||Ff=1

{∑N−1
k=0 αvi

akWvchk
vi

}
, (13)

where Wvc is a learnable projection matrix.

Finally, the fused region embedding of vi is updated by
aggregating the inter-pattern message with mean aggregator:

h̄vi
=

1

N

N−1∑
k=0

h′k
vi
. (14)

Objective Function
With the residual connection of intra-pattern message pass-
ing, we use a fully connected layer as an output layer to obtain
the final region embeddings ĥvi :

ĥvi
= f(

1

N

N−1∑
k=0

hk
vi
+ h̄vi

). (15)

Following [Wang and Li, 2017], we use region embed-
dings to estimate the distribution of mobility, and learn the
embedding by minimizing the difference between the true
distribution and the estimated distribution. Given the source
vi, we calculate the transition probability of destination vj :

pω(vj |vi) =
ωij∑

vj∗∈N(vi)
ωij∗

. (16)

Then, given the region embedding ĥvi
, ĥvj

for region vi,
vj , we estimate the transition probability:

p̂ω(vj |vi) =
exp(ĥ⊤

vi
ĥvj

)∑
vj∗∈N(vi)

exp(ĥ⊤
vi
ĥv∗

j
)
, (17)

Finally, the objective function can expressed as:

L =
∑
i,j

−pω(vj |vi) log p̂ω(vj |vi). (18)

4 Evaluation
This section aims to answer the following research questions:

RQ1 How is the performance of out MGFN as compared to
various state-of-the-art methods?

RQ2 How do different components (e.g., mobility graph fu-
sion, mobility pattern joint learning) affect the results?

RQ3 Can the proposed mobility graph fusion module re-
ally discover mobility patterns? What are its advantages com-
pared with other methods?

RQ4 Why did other models perform worse than ours? Is it
true that the other methods learned how traffic flow changes?
(as we assume in Section 1)

4.1 Experiment Settings
Data Description We evaluate the performance of our
method on New York City (NYC) datasets from NYC open
data website 1. Census blocks gives the boundaries of 180
regions split by streets in Manhattan, NYC. Taxi trips de-
scribes around 10 million taxi trip records during one month
in the studied area. Crime count consists of around 40
thousand crime records during one year in the studied area.

1opendata.cityofnewyork.us
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Check-in count contains over 100 thousand check-in loca-
tions of over 200 fine-grained categories. Land usage type
divides the borough of Manhattan into 12 districts by the
community boards. We follow the settings in [Zhang et al.,
2020] and apply taxi trip data as human mobility data and take
the crime count, check-in count, land usage type as prediction
tasks, respectively.

Baselines We compare MGFN with the following base-
line methods: (1) node2vec [Grover and Leskovec, 2016]
uses biased random walks to learn node latent representa-
tions by skip-gram models; (2) LINE [Tang et al., 2015]
optimizes the objective function that preserves both the local
and global network structures. (3) HDGE [Wang and Li,
2017] jointly embeds a spatial graph and a flow graph with
temporal dynamics. (4) ZE-Mob [Yao et al., 2018] mod-
els spatio-temporal co-occurrence of zones in the embedding
learning; (5) MV-PN [Fu et al., 2019] learns region em-
beddings with multi-view PoI network within the region; (6)
MVURE [Zhang et al., 2020] enable cross-view information
sharing and weighted multi-view fusion with human mobility
and inherent region attributes data (e.g. POI, check-in).

Parameter Settings Following [Zhang et al., 2020], the
dimension of region embeddings d is 96. In mobility graph
fusion module, the weight ci in MGD is set as 1, and the
number of mobility patterns N is set as 7. In mobility pattern
joint learning module, the number of layers L is set as 1.

4.2 Performance Comparison (RQ1)
For regression tasks (i.e., crime, check-in), we apply the
Lasso regression [Tibshirani, 1996] with metrics of Mean
Absolute Error (MAE), Root Mean Square Error (RMSE)
and coefficient of determination (R2). For the clustering
task (i.e., land usage classification), we use K-means to clus-
ter region embeddings with Normalized Mutual Information
(NMI) and Adjusted Rand Index (ARI) with settings in [Yao
et al., 2018]. Table 1 shows the results of crime prediction,
land usage classification and check-in count prediction. We
observe that: (1) urban region embedding approaches outper-
form traditional graph embedding methods, and graph model-
ing methods (i.e., MG-FN, MVURE) generally perform bet-
ter than HDGE, ZE-Mob and MV-PN, indicating the spatial
dependency between regions is a necessity for urban region
embedding; and (2) our MGFN with only human mobility
data outperforms the second best model MVURE with multi-
sourced data (POI, check-in, mobility, etc.) and achieves up
to 12.35% improvement in terms of R2 in the check-in predic-
tion task. It is noted that multi-sourced data used in MVURE
is always unreachable or accompanied by many noise data in
real urban application.

4.3 Model Ablation Study (RQ2)
To further investigate the effect of each component in our
model, we compare MGFN with its three variants by remov-
ing multi graph fusion module, intra-pattern message passing
and inter-pattern message cross attention in mobility pattern
joint learning module from our method, which are named as
MGFN-NF, MGFN-NP and MGFN-NC, respectively. Fig-
ure 4 shows the MAE, ARI and RMSE results of MGFN
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Figure 4: Ablation studies for three tasks on NYC dataset. (a) MAE
in Crime Prediction. (b) ARI in Land Usage Classification. (c)
RMSE in Check-in Prediction.

Figure 5: Comparison of clustering results using different distances.
The x-axis represents hour of a day, and the y-axis is the day of a
month. Each sub-figure represents the result of a measurement, re-
spectively. Each color represents a certain pattern corresponding to
the law of human mobility. Compared with other measurements,
only MGD could effectively identify important patterns such as
morning peaks (red block, from 7 to 9 am for week-days), weekends
late night (purple block from 12 pm to 2 am for week-ends), etc.

respectively. We observe that MGFN performs better than
MGFN-NF, demonstrating that the MGF module effectively
eases the redundant temporal information for learning more
general representations of urban regions. Moreover, MGFN
consistently outperforms MGFN-NP and MGFN-NC, which
indicates the effectiveness of intra message passing and ag-
gregating between nodes in each mobility pattern and inter
messages fusion between mobility patterns in modeling the
complex spatial correlations.

4.4 Graph Similarity Measurement (RQ3)
To intuitively evaluate the performance of the proposed
Mobility Graph Fusion module (Section 3.1), we visualize
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Crime Prediction Land Usage Classification Check-in Prediction
MAE RMSE R2 NMI ARI MAE RMSE R2

LINE 117.53 152.43 0.06 0.17 0.01 564.59 853.82 0.08
node2vec 75.09 104.97 0.49 0.58 0.35 372.83 609.47 0.44

HDGE 72.65 96.36 0.58 0.59 0.29 399.28 536.27 0.57
ZE-Mob 101.98 132.16 0.20 0.61 0.39 360.71 592.92 0.47
MV-PN 92.30 123.96 0.30 0.38 0.16 476.14 784.25 0.08
MVURE 65.16 88.19 0.64 0.78 0.62 297.72 495.27 0.63
MG-FN 59.45 77.60 0.72 0.76 0.58 280.91 436.58 0.72

Table 1: Performance comparison with different methods for cross-domain tasks.
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Figure 6: The generalization ability of our MGFN compared with
three other methods.

the mobility patterns extracted by our multi-graph distance
(MGD) measurement compared with three measures in Sec-
tion 3.1 including Mean, Std, and Uniflow using hierarchical
clustering. Specifically, in Figure 5, a certain color represents
a specific pattern corresponding to the law of human mobil-
ity. We observe that different from other measures, our MGD
(Figure 5.d) is able to distinguish patterns of both morn-
ing/evening peaks and working days/weekends effectively,
due to our integrated considerations with spatio-temporal in-
formation. We argue that this improvement is beneficial to
enabling the cross-domain prediction (i.e., from traffic pre-
diction to crime prediction) by uncovering the dynamic cor-
relations contained in urban regional functionality.

4.5 Generalization Ability of MGFN (RQ4)
To show the generalization ability of our method, we compare
our MGFN with other three methods on both supervised task
(i.e., mobility prediction) and cross-domain task (i.e., crime
prediction) in Figure 6. Other methods perform poorly on
cross-domain tasks because they learn how traffic changes
rather than a generalized region representation. Moreover, af-
ter removed MGF, the generalization performance is reduced
by about 20%, which shows the importance of MGF.

5 Related Works
Graph Representation Learning Graph embedding aims
to learn a low-dimensional vector by mapping the charac-
teristics of nodes to a low-dimensional vector space so that
the proximities of nodes can be well preserved [Cui et al.,
2018]. Early works devote to learn the shallow representa-
tions by graph factorization approaches [Belkin and Niyogi,
2001] relying on spectral embedding from graph Lapla-
cian and skip-gram based methods [Perozzi et al., 2014;
Grover and Leskovec, 2016; Tang et al., 2015] learned by ran-
dom walk objectives. More recently, graph neural networks
(GNNs) have become a widely used tool for graph embedding
[Veličković et al., 2017; Gilmer et al., 2017].
Region Representation Learning Several strategies have
been studied to learn the representation of regions. The first
strategy learns embeddings from time-series human mobility
data. HDGE [Wang and Li, 2017] uses fine-grained human
mobility to construct flow graph, and learn the region embed-
ding at different times. ZE-mob [Yao et al., 2018] regards
the region as a word and the mobility event as context, and
learn the embedding via a word embedding method. The sec-
ond strategy learns embeddings from multi-view cross-geo-
type(region and other spatio-temporal items) correlations. Fu
et al. [2019] take into account both intra-region structural in-
formation and inter-region spatial auto-correlations. Zhang et
al. [2020] use a cross-view information sharing method to
learn comprehensive region embeddings.

6 Conclusion
In this paper, we focus on learning generalized embeddings
to enable cross domain urban computing tasks. We proposed:
(1) a novel mobility graph fusion method where redundant
graphs are integrated as patterns; and (2) a novel mobility pat-
tern joint learning method to enable the cross graph embed-
dings that mutually enhance each other and provide more ef-
fective representation for downstream tasks. Extensive exper-
iments on real-world mobility data show the proposed MGFN
outperforms all baseline methods. Besides, in-depth analysis
reveals insightful observations, e.g., Late nights and evenings
on weekends show a different pattern from workdays. In fu-
ture, we will extend our framework to other downstream tasks
(e.g., house price prediction).
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